Skip to main content
Log in

Crystallization process, microstructure, thermal behavior, and magnetic properties of melt-spun Fe86Cr6P6C2 ribbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The crystallization process, microstructure, thermal stability, and magnetic properties of Fe86Cr6P6C2 amorphous ribbons were studied by X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, differential scanning calorimetry, and vibration sample magnetometry. The crystallization process occurs in three stages where nanocrystalline α-Fe solid solution, Fe3P phosphide, θ-Fe3C and ε-Fe3C carbides are formed. The crystallite size increases with increasing annealing temperature and remains at the nanometer scale (20–88 nm). The microstructure of the annealed ribbons consists of lamella, fine platelets, alternate planes of ferrite and cementite, and grains with different shapes and sizes. The activation energies (499, 386, and 369 kJ/mol) are determined by Kissinger method. The melt-spun ribbons exhibit a low coercivity of 16.598 Oe and a high saturation magnetization of 0.635 emu compared to the annealed ones. The saturation magnetization decreases to a minimum value for the annealed ribbons at 758 K and then increases with increasing the annealing temperature. The Curie temperature increases from 447.4 K for the melt-spun ribbons to 638 K for the fully crystallized ribbons due to the development of the α-Fe phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Kupczyk, J. Świerczek, M. Hasiak, K. Prusik, J. Zbroszczyk, P. Gębara, Microstructure and some thermomagnetic properties of amorphous Fe-(Co)-Mn-Mo-B alloys. J. Alloys Compd. 735, 253–260 (2018). https://doi.org/10.1016/j.jallcom.2017.10.278

    Article  Google Scholar 

  2. C. Souza, D. Ribeiro, C. Kiminami, Corrosion resistance of Fe-Cr-based amorphous alloys: an overview. J. Non-Cryst. Solids 442, 56 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.04.009

    Article  ADS  Google Scholar 

  3. G. Zhang, H. Zhang, S. Yue, A. Wang, A. He, R. Cheng, C.T. Liu, Ultra-low cost and energy-efficient production of FePCSi amorphous alloys with pretreated molten iron from a blast furnace. J. Non-Cryst. Solids 514, 108–115 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.03.045

    Article  ADS  Google Scholar 

  4. Y. Fan, S. Zhang, X. Xu, W. Miao, J. Zhang, T. Wang, C. Chen, R. Wei, F. Li, Effect of the substitution of Si for B on thermal stability, magnetic properties and corrosion resistance in novel Fe-rich amorphous soft magnetic alloy. Intermetallics 138, 107306 (2021). https://doi.org/10.1016/j.intermet.2021.107306

    Article  Google Scholar 

  5. A. Wang, C. Zhao, H. Men, A. He, C. Chang, X. Wang, R.W. Li, Fe-based amorphous alloys for wide ribbon production with high Bs and outstanding amorphous forming ability. J. Alloy Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.01.056

    Article  Google Scholar 

  6. T. Bitoh, D. Watanabe, Effect of yttrium addition on glass-forming ability and magnetic properties of Fe–Co–B–Si–Nb bulk metallic glass. Metals 5, 1127–1135 (2015). https://doi.org/10.3390/met5031127

    Article  Google Scholar 

  7. M. Shi, Z. Liu, T. Zhang, Effects of minor Sn addition on the glass formation and properties of Fe- metalloid metallic glasses with high magnetization and high glass forming ability. J. Magn. Mater. 378, 417–423 (2015). https://doi.org/10.1016/j.jmmm.2014.10.144

    Article  ADS  Google Scholar 

  8. G.Y. Koga, C. Bolfarini, C.S. Kiminami, A.M. Jorge, W.J. Botta, An overview of thermally sprayed Fe-Cr-Nb-B metallic glass coatings: from the alloy development to the coating’s performance against corrosion and wear. J. Therm Spray Tech. 31(4), 923–955 (2022). https://doi.org/10.1007/s11666-022-01371-7

    Article  ADS  Google Scholar 

  9. A. Łukiewska, P. Gębara, Structure, magnetocaloric effect and critical behavior of the Fe60Co12Gd4Mo3B21 amorphous ribbons. Materials 15(1), 34 (2021). https://doi.org/10.3390/ma15010034

    Article  ADS  Google Scholar 

  10. L. Pei, X. Zhang, Z. Yuan, Application of Fe-based amorphous alloy in industrial wastewater treatment: a review. J. Renew. Mater. 10(4), 969 (2022). https://doi.org/10.32604/jrm.2022.017617

    Article  Google Scholar 

  11. Y. Takahara, K. Hatade, H. Matsuda, Reversible structural relaxation in Fe78B7Si15 and Fe40Ni40P14B6 amorphous alloys. Trans. Jap. Inst. Metals 29(10), 774–780 (1988). https://doi.org/10.2320/matertrans1960.29.774

    Article  Google Scholar 

  12. T. Egami, Structural relaxation in amorphous alloys-compositional short range ordering. Mater. Res. Bull. 13, 557–562 (1978). https://doi.org/10.1016/0025-5408(78)90178-2

    Article  Google Scholar 

  13. F.C. Li, T. Liu, J.Y. Zhang, S. Shuang, Q. Wang, A.D. Wang, Y. Yang, Amorphous– nanocrystalline alloys: fabrication, properties, and applications. Mat. Today Adv. 4, 100027 (2019). https://doi.org/10.1016/j.mtadv.2019.100027

    Article  Google Scholar 

  14. A. Cotai, S. Miraglia, B. Neamţu, T. Marinca, H. Chicinaş, O. Isnard, I. Chicinaş, A comparative study of nanocrystalline Fe38.5Co38.5 Nb7 P15Cu1 alloys obtained by mechanical alloying and rapid quenching. Arch. Metal. Mater. 67(2), 555–561 (2022). https://doi.org/10.24425/amm.2022.137790

    Article  Google Scholar 

  15. J.A. Moya, S.G. Caramella, C. Berejnoi, Evolution of soft magnetic, mechanical and electrical properties measured simultaneously during annealing of rapidly solidified alloys. J. Magn. Magn. Mat. 476, 248–253 (2019). https://doi.org/10.1016/j.jmmm.2019.01.008

    Article  ADS  Google Scholar 

  16. L.L. Pang, A. Inoue, E.N. Zanaeva, F. Wang, A.I. Bazlov, Y. Han, F.L. Kong, S.L. Zhu, R.B. Shull, Nanocrystallization, good soft magnetic properties and ultrahigh mechanical strength for Fe82- 85B1316Si1Cu1 amorphous alloys. J. Alloys Compd. 785, 25–37 (2019). https://doi.org/10.1016/j.jallcom.2019.01.150

    Article  Google Scholar 

  17. P. Gębara, M. Hasiak, Investigation of critical behavior in the vicinity of ferromagnetic to paramagnetic phase transition in the Fe75Mo8Cu1B16 alloy. J. Appl. Phys. 124, 083904 (2018). https://doi.org/10.1063/1.5039509

    Article  ADS  Google Scholar 

  18. A. Łukiewska, J. Olszewski, M. Hasiak, P. Gębara, Magnetocaloric effect in amorphous and partially crystallized Fe80Zr7Cr6Nb2Cu1B4 alloy. Acta Phys. Pol A 133(3), 676–679 (2018). https://doi.org/10.12693/APhysPolA.133.676

    Article  ADS  Google Scholar 

  19. R. Babilas, A. Radoń, P. Gębara, Structure and magnetic properties of Fe-B-Si-Zr metallic glasses. Acta Phys. Pol A 131(4), 726–728 (2017). https://doi.org/10.12693/APhysPolA.131.726

    Article  ADS  Google Scholar 

  20. J. Zhou, J. You, K. Qiu, Advances in Fe-based amorphous/nanocrystalline alloys. J. Appl. Phys. 132(4), 040702 (2022). https://doi.org/10.1063/5.0092662

    Article  ADS  Google Scholar 

  21. J. Xu, Y. Yang, Q. Yan, C. Fan, F. Hou, Z. Xie, Effect of microalloying on crystallization behavior, magnetic properties and bending ductility of high Fe content FeSiBCuPC alloys. J. Alloys Compd. 777, 499–505 (2019). https://doi.org/10.1016/j.jallcom.2018.11.029

    Article  Google Scholar 

  22. C. Suryanarayana, A. Inoue, Bulk metallic glasses (CRC Press, 2017). https://doi.org/10.1201/9781315153483

    Book  Google Scholar 

  23. N. Bensebaa, S. Alleg, F.Z. Bentayeb, L. Bessais, J.M. Greneche, Microstructural characterization of Fe–Cr–P–C powder mixture prepared by ball milling. J. Alloys Compd. 388(1), 41–48 (2005). https://doi.org/10.1016/j.jallcom.2004.06.075

    Article  Google Scholar 

  24. B. Huang, C. Zhang, G. Zhang, H. Liao, Wear and corrosion resistant performance of thermal- sprayed Fe-based amorphous coatings: a review. Surf. Coat. Technol. 377(4), 124896 (2019). https://doi.org/10.1016/j.surfcoat.2019.124896

    Article  Google Scholar 

  25. B. Bouzabata, S. Alleg, Products of crystallization of amorphous alloy of Fe77Cr4P8C11 and sequences of precipitation. J. Alloys Compd. 178(1–2), 117–124 (1992). https://doi.org/10.1016/0925-8388(92)90252-5

    Article  Google Scholar 

  26. P. Hua, B. Wang, C. Yu, Y. Han, Q. Sun, Shear-induced amorphization in nanocrystalline NiTi micropillars under large plastic deformation. Acta Mater. 241, 118358 (2022). https://doi.org/10.1016/j.actamat.2022.118358

    Article  Google Scholar 

  27. X. Yu, J. Wang, L. Wang, W. Huang, Fabrication and characterization of CrNbSiTiZr high-entropy alloy films by radio-frequency magnetron sputtering via tuning substrate bias. Surf. Coat. Technol. 412, 127074 (2021). https://doi.org/10.1016/j.surfcoat.2021.127074

    Article  Google Scholar 

  28. M. Nabiałek, Fabrication methods for bulk amorphous alloys, in Alloy Materials and Their Allied Applications. ed. by I. Inamuddin, R. Boddula, M.I. Ahamed, A.M. Asiri (Wiley Online Library, 2020), pp.1–26. https://doi.org/10.1002/9781119654919.ch1

    Chapter  Google Scholar 

  29. J. Zhao, Q. Gao, H. Wang, F. Shu, H. Zhao, W. He, Z. Yu, Microstructure and mechanical properties of Co-based alloy coatings fabricated by laser cladding and plasma arc spray welding. J. Alloys Compd. 785, 846–854 (2019). https://doi.org/10.1016/j.jallcom.2019.01.056

    Article  Google Scholar 

  30. Q. Yan, Y. Gao, C. Du, Z. Yao, Y. Mo, Ultrasonic-assisted shearing characteristics of Fe-based amorphous alloy strips. J. Mater. Eng. Perf. (2022). https://doi.org/10.1007/s11665-022-06952-9

    Article  Google Scholar 

  31. D.H. Milanez, L.I.L. Faria, D.R. Leiva, C.S. Kiminami, W.J. Botta, Assessing technological developments in amorphous/glassy metallic alloys using patent indicators. J. Alloys Compd. 716, 330–335 (2017). https://doi.org/10.1016/j.jallcom.2017.05.105

    Article  Google Scholar 

  32. N.K. Maroju, X. Jin, Mechanism of chip segmentation in orthogonal cutting of Zr-based bulk metallic glass. J. Manuf. Sci. Eng. 141, 081003 (2019). https://doi.org/10.1115/1.4043837

    Article  Google Scholar 

  33. H.P. Tsui, P.H. Lee, C.C. Yeh, J.C. Hung, Ultrasonic vibration-assisted electrical discharge machining on Fe-based metallic glass by adding conductive powder. Proc. CIRP 95, 425–430 (2020). https://doi.org/10.1016/j.procir.2020.02.275

    Article  Google Scholar 

  34. B. De Guillebon, M. Henry, G. Le Gal, C. Tete, Mechanical and magnetic properties of amorphous FeCrPC ribbons and wires. Mat. Sci. Eng. 98, 539–542 (1988). https://doi.org/10.1016/0025-5416(88)90225-X

    Article  Google Scholar 

  35. J. Wang, Y. Di, Z. Fang, S. Guan, T.J. Zhang, Thermal stability, crystallization and soft magnetic properties of Fe-P-C-based glassy alloys. Non-Cryst. Solids 454, 39–45 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.10.014

    Article  ADS  Google Scholar 

  36. G. Le Gal, M. Henry, F. Varret, Effect of elaboration velocity on magnetic properties of melt spun amorphous metal ribbons. Revue Phys. App. 22(8), 729–734 (1987). https://doi.org/10.1051/rphysap:01987002208072900

    Article  Google Scholar 

  37. K. Asami, K. Hashimoto, T. Masumoto, S. Shimodaira, ESCA study of the passive film on an extremely corrosion-resistant amorphous iron alloy. Corr. Sci. 16(12), 909–914 (1976). https://doi.org/10.1016/S0010-938X(76)80010-8

    Article  Google Scholar 

  38. I. Raya, S. Chupradit, M.M. Kadhim, M.Z. Mahmoud, A.T. Jalil, A. Surendar, A.N. Bochvar, Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-PC-based amorphous alloys. Chin. Phys. B 31(1), 016401 (2022). https://doi.org/10.1088/1674-1056/ac3655

    Article  ADS  Google Scholar 

  39. T. Shmyreva, J. Knapp, Nano-amorphous coatings for medical instruments. In: Medical Device Materials: Proceeding Materials and Processes for Medical Devices Conference., 103–107 (2004)

  40. J.M. Boucheret, Concrete and mortars reinforced with FIBRAFLEX amorphous metallic fibers. In: Workshop on fiber reinforced cement and concrete. University of Sheffield, Sheffield (2004).

  41. J.M. Boucheret, 18 wet sprayed mortars reinforced with flexible metallic fibres for renovation: basic requirements and full-scale experimentation. Sprayed Concr. Technol. 2, 166 (2002)

    Google Scholar 

  42. M. Bourrous, F. Varret, Activation energy distribution in amorphous Fe-Cr–PC alloy, determined for Tc measurements during structural relaxation. Solid state Comm. 57(8), 713–716 (1986). https://doi.org/10.1016/0038-1098(86)90358-3

    Article  ADS  Google Scholar 

  43. https://www.saint-gobain-seva.com/fr

  44. L. Lutterotti, MAUD version 2.992, http://maud.radiographema.com/. Accessed 28 Nov 2023

  45. H.M. Rietveld, The Rietveld method. Phys. Scr. 89(9), 098002 (2014). https://doi.org/10.1088/0031-8949/89/9/098002

    Article  ADS  Google Scholar 

  46. T. Paul, A. Loganathan, A. Agarwal, S.P. Harimkar, Kinetics of isochronal crystallization in a Fe-based amorphous alloy. J. Alloys Compd. 753, 679–687 (2018). https://doi.org/10.1016/j.jallcom.2018.04.133

    Article  Google Scholar 

  47. Y. Wang, X. Li, L. Yue, G. Yang, Z. Li, Q. Sun, M. Xu, J. Yi, Crystallization sequence of an (Al86Ni9La5)98Si2 amorphous alloy under continuous heating. J. Non-Cryst. Solids 610, 122310 (2023). https://doi.org/10.1016/j.jnoncrysol.2023.122310

    Article  Google Scholar 

  48. P. Wang, M. Wei, Y. Dong, Z. Zhu, J. Liu, J. Pang, J. Zhang, Crystallization evolution behavior of amorphous Fe85.7Si7.9B3.6Cr2C0.8 powder produced by a novel atomization process. J. Non- Cryst. Solids 594, 121824 (2022). https://doi.org/10.1016/j.jnoncrysol.2023.122373

    Article  Google Scholar 

  49. A.H. Cai, G. Zhou, P.W. Li, D.W. Ding, Q. An, G.J. Zhou, H. Mao, Crystallization kinetics of Cu50Zr40Ti10 amorphous powder. Thermochim. Acta 714, 179261 (2022). https://doi.org/10.1016/j.tca.2022.179261

    Article  Google Scholar 

  50. D. Janovszky, M. Sveda, A. Sycheva, F. Kristaly, F. Zámborszky, T. Koziel, P. Bala, G. Czel, G. Kaptay, J. Term. Anal. Calorim. 147, 7141–7157 (2022). https://doi.org/10.1007/s10973-021-11054-0

    Article  Google Scholar 

  51. S. Nagakura, Study of metallic carbides by electron diffraction Part III. Iron carbides. J. Phys. Soc. Jpn. 14, 186–195 (1959). https://doi.org/10.1143/JPSJ.14.186

    Article  ADS  Google Scholar 

  52. P. Rezaei-Shahreza, A. Seifoddini, S. Hasani, Thermal stability and crystallization process in a Fe-based bulk amorphous alloy: the kinetic analysis. J. Non-Cryst. Solids 471, 286–294 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.044

    Article  ADS  Google Scholar 

  53. H. Göhring, A. Leineweber, E.J. Mittemeijer, A thermodynamic model for non-stoichiometric cementite; the Fe–C phase diagram. Calphad 52, 38–46 (2016). https://doi.org/10.1016/j.calphad.2015.10.014

    Article  Google Scholar 

  54. H.K.D.H. Bhadeshia, Cementite. Int. Mat. Rev. 65–1, 1–27 (2020). https://doi.org/10.1080/09506608.2018.1560984

    Article  Google Scholar 

  55. H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 57, 217–221 (1956). https://doi.org/10.1021/ac60131a045

    Article  Google Scholar 

  56. B. Bouzabata, S. Alleg, Kinetics of crystallization of the amorphous alloy Fe77Cr4P8C11. Mat. Chem. Phys. 33(1–2), 70–75 (1993). https://doi.org/10.1016/0254-0584(93)90092-Z

    Article  Google Scholar 

  57. F. Sun, T. Gloriant, Primary crystallization process of amorphous Al88Ni6Sm6 alloy investigated by differential scanning calorimetry and by electrical resistivity. J. Alloys Compd. 477, 133–138 (2009). https://doi.org/10.1016/j.jallcom.2008.10.021

    Article  Google Scholar 

  58. S. Alleg, L. Hamza, M. Ibrir, S. Souilah, W. Tebib, N.E. Fenineche, J.M. Greneche, Microstructural, hyperfine and magnetic properties FeSiBCuNb deposits. J. Supercond. Nov Magn 28(4), 2431–2439 (2015). https://doi.org/10.1007/s10948-015-3038-1

    Article  Google Scholar 

  59. T. Gloriant, S. Surinach, M.D. Baró, Stability and crystallization of Fe–Co–Nb–B amorphous alloys. J. Non-Cryst. Solids 333(3), 320–326 (2004). https://doi.org/10.1016/j.jnoncrysol.2003.10.007

    Article  ADS  Google Scholar 

  60. A.J.P. Meyer, M.C. Cadeville, Magnetic properties of iron-phosphorus compounds. J. Phys. Soc. Jpn. 17, 223–225 (1962)

    Google Scholar 

  61. M. Acet, H. Herper, P. Entel, E.F. Wassermann, The phase stability of ε-Fe alloys. J. Phys. IV 11(PR8), 229–234 (2001). https://doi.org/10.1051/jp4:2001839

    Article  Google Scholar 

  62. A. Tsuzuki, S. Sago, S.I. Hirano, High-temperature and pressure preparation and properties of iron carbides Fe7C3 and Fe3C. J. Mater. Sci. 19, 2513–2518 (1984). https://doi.org/10.1007/BF00550805

    Article  ADS  Google Scholar 

  63. I.G. Wood, L. Vocadlo, K.S. Knight, D.P. Dobson, W.G. Marshall, G.D. Price, J. Brodholt, Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction. J. Appl. Cryst. 37, 82–90 (2004). https://doi.org/10.1107/S0021889803024695

    Article  Google Scholar 

  64. Y. Yin, K. Zhai, B. Zhang, S. Zhai, Electrical resistivity of iron phosphides at high- pressure and high-temperature conditions with implications for lunar core’s thermal conductivity. J. Geophys. Res. Solid Earth 124(6), 5544–5556 (2019). https://doi.org/10.1029/2018JB017157

    Article  ADS  Google Scholar 

  65. E. Fruchart, A.M. Triquet, R. Fruchart, Magnetic studies of borophosphides of iron, Fe3BxP1–x ε and ε1: Notes on the metal bonds of the metal transitive-metalloid in these compounds. Ann. Chim. (Paris) 9(7–8), 323–332 (1964)

    Google Scholar 

Download references

Acknowledgements

Special mention to the late Prof. M. Zergoug from the Industrial Techniques Research Center. We would like to thank Mr Foued Khammaci from LM2S Laboratory for the XRD and VSM measurements. L. Abadlia would like to thank Prof. J.-G. Gasser from the University of Lorraine (France) for his constant help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Abadlia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abadlia, L., Daoudi, M.I. & Alleg, S. Crystallization process, microstructure, thermal behavior, and magnetic properties of melt-spun Fe86Cr6P6C2 ribbons. Appl. Phys. A 129, 487 (2023). https://doi.org/10.1007/s00339-023-06745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06745-4

Keywords

Navigation