Skip to main content
Log in

Synthesis, structural characterization, optical and electrical properties of NiGdXFe2–XO4 nanoferrites synthesized by citrate-gel auto-combustion method

  • Rapid Communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

NiGdXFe2–XO4 (X = 0.0–0.040 with a variation of 0.010) nanocrystalline materials fabricated via citrate-gel auto-combustion method. The crystalline phase of the fabricated samples was confirmed by XRD, and the Debye–Scherrer formula revealed that the crystalline size ranged from 26.71 to 18.79 nm. The lattice parameter variation was seen in the samples, proving that Vegard's law is followed. Particles and the agglomerated structures shown in the SEM images are in the nanometer range. Two FTIR bands were observed in the FTIR spectrum, which indicates the tetrahedral and octahedral bands their stretching frequencies. LCR metres were used to measure the samples' dielectric properties, which included AC conductivity, impedance (σAC), dielectric permittivity (ε/), and dielectric loss (Tan D). The samples’ AC conductivity increased as the temperature and dopant concentration increased. In cole–cole plots semi-circle behaviour obtained, the results are explained based on grain and grain boundaries. The behaviour of decreasing dielectric constant and dielectric loss with increasing frequency was described by Koop's theory of mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Data availability

Data will be made available upon reasonable request.

References

  1. O. Güler, T. Varol, Ü. Alver, S. Biyik, The wear and arc erosion behavior of novel copper based functionally graded electrical contact materials fabricated by hot pressing assisted electroless plating. Adv. Powder Technol. 32, 2873–2890 (2021). https://doi.org/10.1016/j.apt.2021.05.053

    Article  Google Scholar 

  2. S. Biyik, Characterization of nanocrystalline Cu25Mo electrical contact material synthesized via ball milling. Acta Phys. Pol. A. 132, 886–888 (2017). https://doi.org/10.12693/APhysPolA.132.886

    Article  ADS  Google Scholar 

  3. S. Biyik, F. Arslan, M. Aydin, Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying. J. Electron. Mater. 44, 457–466 (2015). https://doi.org/10.1007/s11664-014-3399-4

    Article  ADS  Google Scholar 

  4. S. Biyik, M. Aydin, Fabrication and arc-erosion behavior of Ag8SnO2 electrical contact materials under inductive loads. Acta Phys. Pol. A. 131, 339–343 (2017). https://doi.org/10.12693/APhysPolA.131.339

    Article  ADS  Google Scholar 

  5. M.N. Akhtar, H.A. Siddiqa, M.S. Nazir, M.A. Khan, Preparations and tailoring of structural, magnetic properties of rare earths (REs) doped nanoferrites for microwave high frequency applications. Ceram. Int. 46, 26521–26529 (2020). https://doi.org/10.1016/j.ceramint.2020.07.118

    Article  Google Scholar 

  6. M.N. Akhtar, M. Yousaf, S.N. Khan, M.S. Nazir, M. Ahmad, M.A. Khan, Structural and electromagnetic evaluations of YIG rare earth doped (Gd, Pr, Ho, Yb) nanoferrites for high frequency applications. Ceram. Int. 43, 17032–17040 (2017). https://doi.org/10.1016/j.ceramint.2017.09.115

    Article  Google Scholar 

  7. A. Nikzad, R. Parvizi, G. Rezaei, B. Vaseghi, R. Khordad, Structural, magnetic and microwave properties of nanocrystalline Ni-Co-Gd ferrites. J. Electron. Mater. 47, 1302–1310 (2018). https://doi.org/10.1007/s11664-017-5921-y

    Article  ADS  Google Scholar 

  8. M.N. Akhtar, M. Yousaf, Y. Lu, M.A. Baqir, M. Azhar Khan, M. Ahmad, A. Sarosh, M. Shahid Nazir, Highly efficient absorber with enhanced magnetoelectric properties based on Y Gd, and Pr doped NMZ nanoferrites. J. Magn. Magn. Mater. 537, 168232 (2021). https://doi.org/10.1016/j.jmmm.2021.168232

    Article  Google Scholar 

  9. A.B. Mugutkar, S.K. Gore, R.S. Mane, S.M. Patange, S.S. Jadhav, S.F. Shaikh, A.M. Al-Enizi, A. Nafady, B.M. Thamer, M. Ubaidullah, Structural modifications in Co–Zn nanoferrites by Gd substitution triggering to dielectric and gas sensing applications. J. Alloys Compd. 844, 156178 (2020). https://doi.org/10.1016/j.jallcom.2020.156178

    Article  Google Scholar 

  10. P. Akhtar, M.N. Akhtar, M.A. Baqir, A. Ahmad, M.U. Khallidoon, M. Farhan, M.A. Khan, Structural and magnetic evaluations of rare-earths (Tb, Pr, Ce, Gd, Y)-doped spinel ferrites for high frequency and switching applications. J. Mater. Sci. Mater. Electron. 32, 7692–7703 (2021). https://doi.org/10.1007/s10854-021-05487-4

    Article  Google Scholar 

  11. G. Kumar, J. Shah, R.K. Kotnala, P. Dhiman, R. Rani, V.P. Singh, G. Garg, S.E. Shirsath, K.M. Batoo, M. Singh, Self-ignited synthesis of Mg–Gd–Mn nanoferrites and impact of cation distribution on the dielectric properties. Ceram Int. 40, 14509–14516 (2014). https://doi.org/10.1016/j.ceramint.2014.07.017

    Article  Google Scholar 

  12. R.R. Kanna, N. Lenin, K. Sakthipandi, A.S. Kumar, Structural, optical, dielectric and magnetic studies of gadolinium-added Mn-Cu nanoferrites. J. Magn. Magn. Mater. 453, 78–90 (2018). https://doi.org/10.1016/j.jmmm.2018.01.019

    Article  ADS  Google Scholar 

  13. N.H. Kumar, D. Ravinder, A. Edukondalu, Synthesis, structural, antimicrobial activity and dielectric properties of Ce3+-doped Ni–Zn nano-ferrites. Appl. Phys. A. 128, 978 (2022). https://doi.org/10.1007/s00339-022-06096-6

    Article  ADS  Google Scholar 

  14. M.N. Akhtar, M. Saleem, M.A. Khan, Al doped spinel and garnet nanostructured ferrites for microwave frequency C and X- band applications. J. Phys. Chem. Solids 123, 260–265 (2018). https://doi.org/10.1016/j.jpcs.2018.08.007

    Article  ADS  Google Scholar 

  15. N. Lenin, A. Karthik, S.R. Srither, M. Sridharpanday, S. Surendhiran, M. Balasubramanian, Synthesis, structural and microwave absorption properties of Cr-doped zinc lanthanum nanoferrites Zn1-Cr La0.1Fe1.9O4 (x=0.09, 0.18, 0.27 and 0.36). Ceram. Int. 47, 34891–34898 (2021). https://doi.org/10.1016/j.ceramint.2021.09.030

    Article  Google Scholar 

  16. A. Noor, M.N. Akhtar, S.N. Khan, M.S. Nazir, M. Yousaf, Synthesis, morphological and electromagnetic evaluations of Ca doped Mn spinel nanoferrites for GHz regime applications. Ceram Int. 46, 13961–13968 (2020). https://doi.org/10.1016/j.ceramint.2020.02.194

    Article  Google Scholar 

  17. G. Lal, K. Punia, S.N. Dolia, P.A. Alvi, B.L. Choudhary, S. Kumar, Structural, cation distribution, optical and magnetic properties of quaternary Co0.4+XZn0.6–XFe2O4 (x = 0.0, 0.1 and 0.2) and Li doped quinary Co0.4+XZn0.5–XLi0.1Fe2O4 (x = 0.0, 0.05 and 0.1) nanoferrites. J Alloys Compd. 828, 154388 (2020). https://doi.org/10.1016/j.jallcom.2020.154388

    Article  Google Scholar 

  18. Y. Slimani, M.A. Almessiere, A.D. Korkmaz, A. Baykal, A. Manikandan, H. Gungunes, M.S. Toprak, Ultrasound-assisted synthesis and magnetic investigations of Ni0.4Cu0.4Zn0.2GaXGdXFe2–2XO4 (0.00 ≤ x ≤ 0.04) nanosized spinel ferrites. Appl. Phys. A. 128, 593 (2022). https://doi.org/10.1007/s00339-022-05727-2

    Article  ADS  Google Scholar 

  19. B.L. Shinde, U.M. Mandle, A.M. Pachpinde, K.S. Lohar, Synthesis and characterization of Al3+ substituted Ni–Cu–Zn nano ferrites. J. Therm. Anal. Calorim. 147, 2947–2956 (2022). https://doi.org/10.1007/s10973-021-10719-0

    Article  Google Scholar 

  20. M. Junaid, I. Kousar, S. Gulbadan, M.A. Khan, M.A. Yousuf, M.M. Baig, G.A. Ashraf, H.H. Somaily, M. Morsi, Structural, microstructural, spectral, and dielectric properties of erbium substituted spinel ferrites. Phys. B Condens Matter. 641, 414120 (2022). https://doi.org/10.1016/j.physb.2022.414120

    Article  Google Scholar 

  21. A. Kamal, M.H. Saleem, H. Alshaya, M.K. Okla, H.J. Chaudhary, M.F.H. Munis, Ball-milled synthesis of maize biochar-ZnO nanocomposite (MB-ZnO) and estimation of its photocatalytic ability against different organic and inorganic pollutants. J. Saudi Chem. Soc. 26, 101445 (2022). https://doi.org/10.1016/j.jscs.2022.101445

    Article  Google Scholar 

  22. S. Biyik, Effect of cubic and hexagonal boron nitride additions on the synthesis of Ag–SnO2 electrical contact material. J. Nanoelectron. Optoelectron. 14, 1010–1015 (2019). https://doi.org/10.1166/jno.2019.2592

    Article  Google Scholar 

  23. S. Biyik, Effect of reinforcement ratio on physical and mechanical properties of Cu-W composites synthesized by ball milling. Mater. Focus 7, 535–541 (2018). https://doi.org/10.1166/mat.2018.1513

    Article  Google Scholar 

  24. J. Vasudevan, S. Johnson Jeyakumar, B. Arunkumar, M. Jothibas, A. Muthuvel, S. Vijayalakshmi, Optical and magnetic investigation of Cu doped ZnO nanoparticles synthesized by solid state method. Mater. Today Proc. 48, 438–442 (2022). https://doi.org/10.1016/j.matpr.2020.12.429

    Article  Google Scholar 

  25. S. Supriya, Synthesis mechanisms and effects of BaTiO3 doping on the optical properties of Bi0.5Na0.5TiO3 lead-free ceramics. J. Solid State Chem. 308, 122940 (2022). https://doi.org/10.1016/j.jssc.2022.122940

    Article  Google Scholar 

  26. N.S. Alharbi, N.S. Alsubhi, A.I. Felimban, Green synthesis of silver nanoparticles using medicinal plants: characterization and application. J. Radiat. Res. Appl. Sci. 15, 109–124 (2022). https://doi.org/10.1016/j.jrras.2022.06.012

    Article  Google Scholar 

  27. A. Soufi, H. Hajjaoui, R. Elmoubarki, M. Abdennouri, N. Barka, Sol-gel auto-combustion synthesis of Cu1-xMgxFe2O4 nanoparticles and their heterogenous Fenton-like activity towards tartrazine. Inorg. Chem. Commun. 142, 109717 (2022). https://doi.org/10.1016/j.inoche.2022.109717

    Article  Google Scholar 

  28. S. Goud, N. Venkatesh, D. Ravi Kumar, S. Barapati, P. Veerasomaiah, Study of structural, optical, photocatalytic, electromagnetic, and biological properties Co0.75Mg0.25CeXFe2−XO4 of Mg-Co nano ferrites. Inorg. Chem. Commun. 145, 109969 (2022). https://doi.org/10.1016/j.inoche.2022.109969

    Article  Google Scholar 

  29. D.R. Kumar, S.I. Ahmad, Ch.A. Lincoln, D. Ravinder, Structural, optical, room-temperature and low-temperature magnetic properties of Mg–Zn nanoferrite ceramics. J. Asian Ceram. Soc. 7, 53–68 (2019). https://doi.org/10.1080/21870764.2018.1563036

    Article  Google Scholar 

  30. P. Punia, R. Dhar, B. Ravelo, A.V. Trukhanov, L.V. Panina, P. Thakur, A. Thakur, Microstructural, optical and magnetic study of Ni–Zn nanoferrites. J. Supercond. Nov. Magn. 34, 2131–2140 (2021). https://doi.org/10.1007/s10948-021-05967-y

    Article  Google Scholar 

  31. S. Supriya, Recent trends and morphology mechanisms of rare-earth based BiFeO3 nano perovskites with excellent photocatalytic performances. J. Rare Earths 41, 331–341 (2023). https://doi.org/10.1016/j.jre.2022.08.011

    Article  Google Scholar 

  32. T. Yan, Q. Han, Z. Li, Y. Song, Y. Wang, X. Zhang, Influence of rare earth doping and calcination temperature on temperature sensitivity of gadolinium molybdate nanoparticle. J. Alloys Compd. 907, 164462 (2022). https://doi.org/10.1016/j.jallcom.2022.164462

    Article  Google Scholar 

  33. D.R. Kumar, Ch.A. Lincoln, D. Ravinder, S.I. Ahmad, Structural, morphological, luminescence, magnetic, and electrical transport properties of zinc-doped MnFe2O4 nanomaterials. Appl. Phys. A 126, 705 (2020). https://doi.org/10.1007/s00339-020-03894-8

    Article  ADS  Google Scholar 

  34. A. Goyal, S. Bansal, S. Singhal, Facile reduction of nitrophenols: COMPARATIVE catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites. Int. J. Hydrogen Energy 39, 4895–4908 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.050

    Article  Google Scholar 

  35. A.V. Humbe, S.B. Somvanshi, J.S. Kounsalye, A. Kumar, K.M. Jadhav, Influential trivalent ion (Cr3+) substitution in mixed Ni–Zn nanoferrites: cation distribution, magnetic, Mossbauer, electric, and dielectric studies. Ceram. Int. 48, 34075–34083 (2022). https://doi.org/10.1016/j.ceramint.2022.08.164

    Article  Google Scholar 

  36. S.B. Somvanshi, M.V. Khedkar, P.B. Kharat, K.M. Jadhav, Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis. Ceram Int. 46, 8640–8650 (2020). https://doi.org/10.1016/j.ceramint.2019.12.097

    Article  Google Scholar 

  37. V.A. Bharati, S.B. Somvanshi, A.V. Humbe, V.D. Murumkar, V.V. Sondur, K.M. Jadhav, Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles. J. Alloys Compd. 821, 153501 (2020). https://doi.org/10.1016/j.jallcom.2019.153501

    Article  Google Scholar 

  38. B.B. Patil, A.D. Pawar, D.B. Bhosale, J.S. Ghodake, J.B. Thorat, T.J. Shinde, Effect of La3+ substitution on structural and magnetic parameters of Ni–Cu–Zn nano-ferrites. J. Nanostruct. Chem. 9, 119–128 (2019). https://doi.org/10.1007/s40097-019-0302-0

    Article  Google Scholar 

  39. N.M. Deraz, Effects of magnesia addition on structural, morphological and magnetic properties of nano-crystalline nickel ferrite system. Ceram Int. 38, 511–516 (2012). https://doi.org/10.1016/j.ceramint.2011.07.036

    Article  Google Scholar 

  40. K. Ishaq, A.A. Saka, A.O. Kamardeen, A. Ahmed, M.I. Alhassan, H. Abdullahi, Characterization and antibacterial activity of nickel ferrite doped α-alumina nanoparticle. Eng. Sci. Technol. Int. J. 20, 563–569 (2017). https://doi.org/10.1016/j.jestch.2016.12.008

    Article  Google Scholar 

  41. G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan, S.A. Antony, Spinel NiXZn1–XFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye. J. Mol. Struct. 1119(2016), 39–47 (2016). https://doi.org/10.1016/j.molstruc.2016.04.049

    Article  ADS  Google Scholar 

  42. M.K. Anupama, N. Srinatha, S. Matteppanavar, B. Angadi, B. Sahoo, B. Rudraswamy, Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites. Ceram. Int. 44, 4946–4954 (2018). https://doi.org/10.1016/j.ceramint.2017.12.087

    Article  Google Scholar 

  43. P. Tiwari, R. Verma, S.N. Kane, T. Tatarchuk, F. Mazaleyrat, Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites. Mater. Chem. Phys. 229, 78–86 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.030

    Article  Google Scholar 

  44. M.M.N. Ansari, S. Khan, N. Ahmad, A comprehensive investigation of structural, thermal and electrical properties of Ti0.35Zn0.55Cu0.1Fe2O4 (T = Mn, Ni) nano ferrites. Phys. B Condens. Matter. 566, 86–95 (2019). https://doi.org/10.1016/j.physb.2019.05.003

    Article  ADS  Google Scholar 

  45. M. Ramzan, M.I. Arshad, M. Sharif, K. Mahmood, A. Ali, N. Amin, N. Lu, S. Arshad, Y. Jamil, M. Ajaz-un-Nabi, Investigation of electrical and magnetic properties of La3+ substituted M-type Ba–Ni nano-ferrites. J. Supercond. Nov. Magn. 32, 3517–3524 (2019). https://doi.org/10.1007/s10948-019-5115-3

    Article  Google Scholar 

  46. M. Junaid, M.A. Khan, F. Iqbal, G. Murtaza, M.N. Akhtar, M. Ahmad, I. Shakir, M.F. Warsi, Structural, spectral, dielectric and magnetic properties of Tb–Dy doped Li-Ni nano-ferrites synthesized via micro-emulsion route. J. Magn. Magn. Mater. 419, 338–344 (2016). https://doi.org/10.1016/j.jmmm.2016.06.043

    Article  ADS  Google Scholar 

  47. S.B. Kondawar, A.I. Nandapure, Magnetic and electrical properties of zinc-substituted nickel ferrite reinforced conducting polyaniline nanocomposites. J. Chin. Adv. Mater. Soc. 2, 186–198 (2014). https://doi.org/10.1080/22243682.2014.934919

    Article  Google Scholar 

  48. M.A. Dar, K. Majid, M.H. Najar, R.K. Kotnala, J. Shah, Synthesis and characterization of Li0.5Fe2.5XGdxO4 ferrite nano-particles as a potential candidate for microwave device applications. Mater. Des. 90, 443–452 (2016). https://doi.org/10.1016/j.matdes.2015.10.151

    Article  Google Scholar 

  49. M.A. Dar, V. Verma, S.P. Gairola, W.A. Siddiqui, R.K. Singh, R.K. Kotnala, Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl. Surf. Sci. 258, 5342–5347 (2012). https://doi.org/10.1016/j.apsusc.2012.01.158

    Article  ADS  Google Scholar 

  50. N. Jahan, M.N.I. Khan, F.U.Z. Chowdhury, A.K.M. Akhter Hossain, S.M. Hoque, M.A. Matin, M.N. Hossain, M.M. Hossain, M.M. Uddin, Influence of Yb3+ on the structural, electrical and optical properties of sol–gel synthesized Ni-Zn nanoferrites. Results Phys. 19, 103450 (2020). https://doi.org/10.1016/j.rinp.2020.103450

    Article  Google Scholar 

  51. S.T. Assar, H.F. Abosheiasha, M.K. el Nimr, Study of the dielectric behavior of Co–Ni–Li nanoferrites. J. Magn. Magn. Mater. 350, 12–18 (2014). https://doi.org/10.1016/j.jmmm.2013.09.022

    Article  ADS  Google Scholar 

  52. A. Sinha, A. Dutta, Microstructure evolution, dielectric relaxation and scaling behavior of Dy-for-Fe substituted Ni-nanoferrites. RSC Adv. 5, 100330–100338 (2015). https://doi.org/10.1039/C5RA14783B

    Article  ADS  Google Scholar 

  53. S. Nasir, G. Asghar, M.A. Malik, M. Anis-ur-Rehman, Structural, dielectric and electrical properties of zinc doped nickel nanoferrites prepared by simplified sol–gel method. J Solgel Sci Technol. 59, 111–116 (2011). https://doi.org/10.1007/s10971-011-2468-x

    Article  Google Scholar 

  54. G. Datt, A.C. Abhyankar, Dopant driven tunability of dielectric relaxation in M X Co (1–X) Fe 2 O 4 (M: Zn 2+, Mn 2+, Ni 2+) nano-ferrites. J. Appl. Phys. 122, 034102 (2017). https://doi.org/10.1063/1.4990275

    Article  ADS  Google Scholar 

  55. P. Chand, S. Vaish, P. Kumar, Structural, optical and dielectric properties of transition metal (MFe2O4; M = Co, Ni and Zn) nanoferrites. Phys. B Condens. Matter. 524, 53–63 (2017). https://doi.org/10.1016/j.physb.2017.08.060

    Article  ADS  Google Scholar 

  56. S. Nasir, M. Anis-ur-Rehman, M.A. Malik, Structural and dielectric properties of Cr-doped Ni–Zn nanoferrites. Phys. Scr. 83, 025602 (2011). https://doi.org/10.1088/0031-8949/83/02/025602

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Please indicate the specific contributions made by each author (list the authors’ initials followed by their surnames, e.g., YLC). The name of each author must appear at least once in each of the three categories below. Category 1: conception and design of study: BS, acquisition of data: NA, analysis and/or interpretation of data: BS. Category 2: drafting the manuscript: BS, revising the manuscript critically for important intellectual content: DR. Category 3: approval of the version of the manuscript to be published (the names of all authors must be listed): BS, NA, DR.

Corresponding author

Correspondence to Bandi Sreematha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreematha, B., Arundhathi, N. & Ravinder, D. Synthesis, structural characterization, optical and electrical properties of NiGdXFe2–XO4 nanoferrites synthesized by citrate-gel auto-combustion method. Appl. Phys. A 129, 488 (2023). https://doi.org/10.1007/s00339-023-06740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06740-9

Keywords

Navigation