Skip to main content
Log in

Effects of trace organic contamination on micro–nanostructure-induced superhydrophobic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Superhydrophobicity has been a crucial research topic due to its ability to make surfaces stay dry and self-clean. Low-surface-energy organic coatings are widely used to fabricate superhydrophobic surfaces by modifying surface groups and minimizing surface energy. Considering defects would seriously undermine these coatings, which would further lead to hydrophobicity dwindling and lifetime decreasing, researchers have begun to investigate the development of superhydrophobic surfaces without organic coatings. However, it is still controversial whether these superhydrophobic surfaces are really free of organic substances with low surface energy. In this work, O3 bombardment was utilized to construct micro–nanostructures on aluminum foil. The aluminum foil surface turns to superhydrophobic after ozone bombardment with the contact angle (CAs) increasing from 20° to 161°. Results showed the presence of silicon contaminations on alumina surfaces despite the fact that no organic coatings are utilized in the fabrication process. The transition of hydrophilic-to-superhydrophobic was attributed to both surface morphology and silicon contamination from pump oil. Our work reveals that trace organic contamination from pump oil is a key factor that cannot be ignored in scenarios with vacuum pump use, which could provide some favorable evidence to figure out the controversial issue mentioned above.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C. Neinhuis, W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79(6), 667–677 (1997)

    Google Scholar 

  2. I.P. Parkin, R.G. Palgrave, Self-cleaning coatings. J. Mater. Chem. 15(17), 1689–1695 (2005)

    Google Scholar 

  3. S. Farhadi, M. Farzaneh, S.A. Kulinich, Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 257(14), 6264–6269 (2011)

    ADS  Google Scholar 

  4. S.A. Kulinich, S. Farhadi, K. Nose, X.W. Du, Superhydrophobic surfaces: are they really ice-repellent? Langmuir 27(1), 25–29 (2011)

    Google Scholar 

  5. O. Parent, A. Ilinca, Anti-icing and de-icing techniques for wind turbines: critical review. Cold Reg. Sci. Technol. 65(1), 88–96 (2011)

    Google Scholar 

  6. Q.L. Zhang, M. He, J. Chen, J.J. Wang, Y.L. Song, L. Jiang, Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chem. Commun. 49(40), 4516–4518 (2013)

    Google Scholar 

  7. S.L. Zheng, C. Li, Q.T. Fu, W. Hu, T.F. Xiang, Q. Wang, M.P. Du, X.C. Liu, Z. Chen, Development of stable superhydrophobic coatings on aluminum surface for corrosion-resistant, self-cleaning, and anti-icing applications. Mater. Des. 93, 261–270 (2016)

    Google Scholar 

  8. E. Vazirinasab, R. Jafari, G. Momen, Application of superhydrophobic coatings as a corrosion barrier: a review. Surf. Coat. Technol. 341, 40–56 (2018)

    Google Scholar 

  9. F.Z. Zhang, L.L. Zhao, H.Y. Chen, S.L. Xu, D.G. Evans, X. Duan, Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angew. Chem. Int. Ed. Engl. 47(13), 2466–2469 (2008)

    Google Scholar 

  10. G.Y. Wang, Y.Z. Shen, J. Tao, X.Y. Luo, L.Q. Zhang, Y.P. Xia, Fabrication of a superhydrophobic surface with a hierarchical nanoflake–micropit structure and its anti-icing properties. RSC Adv. 7(16), 9981–9988 (2017)

    ADS  Google Scholar 

  11. R.Y. Sun, J. Zhao, Z. Li, N. Qin, J.L. Mo, Y.J. Pan, D.B. Luo, Robust superhydrophobic aluminum alloy surfaces with anti-icing ability, thermostability, and mechanical durability. Prog. Org. Coat. 147, 105745 (2020)

    Google Scholar 

  12. C.H. Xue, S.T. Jia, J. Zhang, J.Z. Ma, Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci. Technol. Adv. Mater. 11(3), 033002 (2010)

    Google Scholar 

  13. E.K. Sam, D.K. Sam, X.M. Lv, B.T. Liu, X.X. Xiao, S.H. Gong, W.T. Yu, J. Chen, J. Liu, Recent development in the fabrication of self-healing superhydrophobic surfaces. Chem. Eng. J. 373, 531–546 (2019)

    Google Scholar 

  14. N.F. Himma, N. Prasetya, S. Anisah, I.G. Wenten, Superhydrophobic membrane: progress in preparation and its separation properties. Rev. Chem. Eng. 35(2), 211–238 (2019)

    Google Scholar 

  15. Y.X. Bai, H.P. Zhang, Y.Y. Shao, H. Zhang, J. Zhu, Recent progresses of superhydrophobic coatings in different application fields: an overview. Coatings 11(2), 116–146 (2021)

    Google Scholar 

  16. S.W. Lv, X.M. Zhang, X.D. Yang, X.L. Liu, Z.J. Yang, Y. Zhai, Fabrication of superhydrophobic surface with corrosion resistance via cyclic chemical etching process on aluminum substrate. Mater. Res. Express 9(2), 026520 (2022)

    ADS  Google Scholar 

  17. Q. Yin, Q. Guo, Z.L. Wang, Y.Q. Chen, H.G. Duan, P. Cheng, 3D-printed bioinspired Cassie-Baxter wettability for controllable microdroplet manipulation. ACS Appl. Mater. Interfaces 13(1), 1979–1987 (2021)

    Google Scholar 

  18. L. Savio, K.B. Bhavitha, G. Bracco, G. Luciano, D. Cavallo, G. Paolini, S. Passaglia, G. Carraro, L. Vattuone, R. Masini, M. Smerieri, Correlating hydrophobicity to surface chemistry of microstructured aluminium surfaces. Appl. Surf. Sci. 542, 148574 (2021)

    Google Scholar 

  19. H.Y. Tao, X.W. Song, Z.Q. Hao, J.Q. Lin, One-step formation of multifunctional nano- and microscale structures on metal surface by femtosecond laser. Chin. Opt. Lett. 13(6), 061402–061405 (2015)

    ADS  Google Scholar 

  20. M.J. Eskandari, A. Shafyei, F. Karimzadeh, Investigation of wetting properties of gold nanolayer coated aluminum surfaces textured with continuous-wave fiber laser ablation. Thin Solid Films 711, 138278 (2020)

    ADS  Google Scholar 

  21. X.L. Wang, H.Y. Hu, Q. Ye, T.T. Gao, F. Zhou, Q.J. Xue, Superamphiphobic coatings with coralline-like structure enabled by one-step spray of polyurethane/carbon nanotube composites. J. Mater. Chem. 22(19), 9624–9631 (2012)

    Google Scholar 

  22. A. Hooda, M.S. Goyat, J.K. Pandey, A. Kumar, R. Gupta, A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog. Org. Coat. 142, 105557 (2020)

    Google Scholar 

  23. S.J. Choi, K.Y. Suh, H.H. Lee, A geometry controllable approach for the fabrication of biomimetic hierarchical structure and its superhydrophobicity with near-zero sliding angle. Nanotechnology 19(27), 275305 (2008)

    Google Scholar 

  24. S.Y. Li, X.G. Xiang, B.H. Ma, X.D. Meng, Facile preparation of diverse alumina surface structures by anodization and superhydrophobic surfaces with tunable water droplet adhesion. J. Alloys Compd. 779, 219–228 (2019)

    Google Scholar 

  25. S. Peng, D. Tian, X.J. Yang, W.L. Deng, Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires. ACS Appl. Mater. Interfaces 6(7), 4831–4841 (2014)

    Google Scholar 

  26. T. Fujii, Y. Aoki, H. Habazaki, Fabrication of super-oil-repellent dual pillar surfaces with optimized pillar intervals. Langmuir 27(19), 11752–11756 (2011)

    Google Scholar 

  27. X.T. Zhu, Z.Z. Zhang, X.H. Xu, X.H. Men, J. Yang, X.Y. Zhou, Q.J. Xue, Facile fabrication of a superamphiphobic surface on the copper substrate. J. Colloid Interface Sci. 367(1), 443–449 (2012)

    ADS  Google Scholar 

  28. X. Deng, L. Mammen, H.J. Butt, D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating. Science 335(6064), 67–70 (2012)

    ADS  Google Scholar 

  29. D. Nakajima, T. Kikuchi, S. Natsui, R.O. Suzuki, Highly ordered anodic alumina nanofibers fabricated via two distinct anodizing processes. ECS Electrochem. Lett. 4(5), H14–H17 (2015)

    Google Scholar 

  30. T. Kikuchi, F. Onoda, M. Iwai, R.O. Suzuki, Influence of sub-10 nm anodic alumina nanowire morphology formed by two-step anodizing aluminum on water wettability and slipping behavior. Appl. Surf. Sci. 546, 149090 (2021)

    Google Scholar 

  31. D. Nakajima, T. Kikuchi, S. Natsui, R.O. Suzuki, Mirror-finished superhydrophobic aluminum surfaces modified by anodic alumina nanofibers and self-assembled monolayers. Appl. Surf. Sci. 440, 506–513 (2018)

    ADS  Google Scholar 

  32. D. Nakajima, T. Kikuchi, T. Yoshioka, H. Matsushima, M. Ueda, R.O. Suzuki, S. Natsui, A superhydrophilic aluminum surface with fast water evaporation based on anodic alumina bundle structures via anodizing in pyrophosphoric acid. Materials (Basel) 12(21), 3497–3509 (2019)

    ADS  Google Scholar 

  33. R. Kondo, D. Nakajima, T. Kikuchi, S. Natsui, R.O. Suzuki, Superhydrophilic and superhydrophobic aluminum alloys fabricated via pyrophosphoric acid anodizing and fluorinated SAM modification. J. Alloys Compd. 725, 379–387 (2017)

    Google Scholar 

  34. D. Nakajima, T. Kikuchi, S. Natsui, R.O. Suzuki, Advancing and receding contact angle investigations for highly sticky and slippery aluminum surfaces fabricated from nanostructured anodic oxide. RSC Adv. 8(65), 37315–37323 (2018)

    ADS  Google Scholar 

  35. P. Hale, S. Turgeon, P. Horny, F. Lewis, N. Brack, G.V. Riessen, P. Pigram, D. Mantovani, X-ray photoelectron emission microscopy and time-of-flight secondary ion mass spectrometry analysis of ultrathin fluoropolymer coatings for stent applications. Langmuir 24(15), 7897–7905 (2008)

    Google Scholar 

  36. H.C. Hu, Y. Li, N. Zhang, Y.S. Ding, Synthesis and characterization of a poly(o-anisidine)–SiC composite and its application for corrosion protection of steel. RSC Adv. 7(19), 11732–11742 (2017)

    ADS  Google Scholar 

  37. J.C. Ma, H. Cha, M.K. Kim, D.G. Cahill, N. Miljkovic, Condensation induced delamination of nanoscale hydrophobic films. Adv. Funct. Mater. 29(43), 4516–4518 (2019)

    Google Scholar 

  38. D.H. Wang, Q.Q. Sun, M.J. Hokkanen, C.L. Zhang, F.Y. Lin, Q. Liu, S.P. Zhu, T.F. Zhou, Q. Chang, B. He, Q. Zhou, L.Q. Chen, Z.K. Wang, R. Ras, X. Deng, Design of robust superhydrophobic surfaces. Nature 582(7810), 55–59 (2020)

    ADS  Google Scholar 

  39. Z.J. Chen, Y.B. Guo, S.M. Fang, A facial approach to fabricate superhydrophobic aluminum surface. Surf. Interface Anal. 42(1), 1–6 (2009)

    Google Scholar 

  40. B. Yan, J. Tao, C. Pang, Z. Zheng, Z. Shen, C.H. Huan, T. Yu, Reversible UV-light-induced ultrahydrophobic-to-ultrahydrophilic transition in an alpha-Fe2O3 nanoflakes film. Langmuir 24(19), 10569–10571 (2008)

    Google Scholar 

  41. C. Yang, S.H. Cui, Y.C. Weng, Z.C. Wu, L.L. Liu, Z.Y. Ma, X.B. Tian, R.K.Y. Fu, P.K. Chu, Z.Z. Wu, Scalable superhydrophobic T-shape micro/nano structured inorganic alumina coatings. Chem. Eng. J. 409, 128142 (2021)

    Google Scholar 

  42. S. Parvate, P. Dixit, S. Chattopadhyay, Superhydrophobic surfaces: insights from theory and experiment. J. Phys. Chem. B 124(8), 1323–1360 (2020)

    Google Scholar 

  43. A. Chaudhary, H.C. Barshilia, Nanometric multiscale rough CuO/Cu(OH)2 superhydrophobic surfaces prepared by a facile one-step solution-immersion process: transition to superhydrophilicity with oxygen plasma treatment. J. Phys. Chem. C 115(37), 18213–18220 (2011)

    Google Scholar 

  44. K.S. Liu, M.Y. Cao, A. Fujishima, L. Jiang, Bio-inspired titanium dioxide materials with special wettability and their applications. Chem. Rev. 114(19), 10044–10094 (2014)

    Google Scholar 

  45. D.V. Ta, A. Dunn, T.J. Wasley, R.W. Kay, J. Stringer, P.J. Smith, C. Connaughton, J.D. Shephard, Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Appl. Surf. Sci. 357, 248–254 (2015)

    ADS  Google Scholar 

  46. L.B. Boinovich, A.M. Emelyanenko, K.A. Emelyanenko, A.G. Domantovsky, A.A. Shiryaev, Comment on “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications” by Duong V. Ta, Andrew Dunn, Thomas J. Wasley, Robert W. Kay, Jonathan Stringer, Patrick J. Smith, Colm Connaughton, Jonathan D. Shephard (Appl. Surf. Sci. 357 (2015) 248–254). Appl. Surf. Sci. 379, 111–113 (2016)

    ADS  Google Scholar 

  47. Z.X. Lian, J.K. Xu, Z.J. Yu, P. Yu, W.F. Ren, Z.B. Wang, H.D. Yu, Bioinspired reversible switch between underwater superoleophobicity/superaerophobicity and oleophilicity/aerophilicity and improved antireflective property on the nanosecond laser-ablated superhydrophobic titanium surfaces. ACS Appl. Mater. Interfaces 12(5), 6573–6580 (2020)

    Google Scholar 

  48. P. Gregorčič, Comment on “Bioinspired reversible switch between underwater superoleophobicity/superaerophobicity and oleophilicity/aerophilicity and improved antireflective property on the nanosecond laser-ablated superhydrophobic titanium surfaces.” ACS Appl. Mater. Interfaces 13(2), 2117–2127 (2021)

    Google Scholar 

  49. T.L. Liu, C.J. Kim, Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids. Science 346(6213), 1096–1100 (2014)

    ADS  Google Scholar 

  50. Q.S. Zheng, Y. Yu, Z.H. Zhao, Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir 21(26), 12207–12212 (2005)

    Google Scholar 

  51. L.B. Boinovich, A.M. Emelyanenko, A.S. Pashinin, C.H. Lee, J. Drelich, Y.K. Yap, Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings. Langmuir 28(2), 1206–1216 (2012)

    Google Scholar 

  52. V.S. Yalishev, M. Iqbal, V.V. Kim, S.A. Khan, R.A. Ganeev, A.S. Alnaser, Reversible wettability transition of laser-textured metals after vacuum storing and low-temperature annealing. Appl. Phys. A 127(5), 393 (2021)

    ADS  Google Scholar 

  53. J.M. Bailey, I.M. Ritchie, Metal oxidation: an electrochemical perspective. Oxid. Met. 30(5–6), 405–418 (1988)

    Google Scholar 

  54. C. Ocal, S. Ferrer, N. García, Diffusion of metallic atoms through thin oxides in metallic substrates. Surf. Sci. 162(1–3), 558–562 (1985)

    ADS  Google Scholar 

  55. M.C. Muñoz, J.L. Sacedón, Electron stimulated oxidation of silicon surfaces. J. Chem. Phys. 74(8), 4693–4700 (1981)

    ADS  Google Scholar 

  56. L.P. Ramírez, F. Bournel, J.J. Gallet, L. Dudy, F. Rochet, Testing the Cabrera-Mott oxidation model for aluminum under realistic conditions with near-ambient pressure photoemission. J. Phys. Chem. C 126(5), 2517–2530 (2022)

    Google Scholar 

  57. Z.Q. Yang, L.L. He, J. Chen, H.T. Cong, H.Q. Ye, Microstructure and thermal stability of an ultrafine Al/Al2O3 composite. J. Mater. Res. 18(2), 272–278 (2011)

    ADS  Google Scholar 

  58. S. Fukuzaki, H. Urano, T. Yamaguchi, Effect of modification of alumina surfaces by ozone on adsorption behavior of bovine serum albumin at alumina-water interfaces. J. Ferment. Bioeng. 84(5), 407–413 (1997)

    Google Scholar 

  59. F. Qi, Z.L. Chen, B.B. Xu, J.M. Shen, J. Ma, C. Joll, A. Heitz, Influence of surface texture and acid–base properties on ozone decomposition catalyzed by aluminum (hydroxyl) oxides. Appl. Catal. B 84(3–4), 684–690 (2008)

    Google Scholar 

  60. K. Thomas, P.E. Hoggan, L. Mariey, J. Lamotte, J.C. Lavalley, Experimental and theoretical study of ozone adsorption on alumina. Catal. Lett. 46(1/2), 77–82 (1997)

    Google Scholar 

  61. I. Popova, V. Zhukov, J.T. Yates, Comparative study of Al(111) oxidation with O3 and O2. Surf. Sci. 518(1–2), 39–48 (2002)

    ADS  Google Scholar 

  62. A. Marmur, Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19(20), 8343–8348 (2003)

    Google Scholar 

  63. J.W. Drelich, L. Boinovich, E. Chibowski, C.D. Volpe, L. Hołysz, A. Marmur, S. Siboni, Contact angles: history of over 200 years of open questions. Surf. Innov. 8(1–2), 3–27 (2020)

    Google Scholar 

  64. L.D. Lai, J.F. Yan, J. Li, B. Lai, Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: performance, biotoxicity, degradation pathways and mechanism. Chem. Eng. J. 343, 676–688 (2018)

    Google Scholar 

  65. P. Marcus, C. Hinnen, I. Olefjord, Determination of attenuation lengths of photoelectrons in aluminium and aluminium oxide by angle-dependent X-ray photoelectron spectroscopy. Surf. Interface Anal. 20(11), 923–929 (1993)

    Google Scholar 

  66. Y. Ai, N. Yin, Y.Q. Ouyang, Y.X. Xu, P.F. Yang, Waste non-burn-free brick derived sulfhydryl functioned magnetic zeolites and their efficient removal of uranium (VI) ions. Appl. Surf. Sci. 571, 151241 (2022)

    Google Scholar 

  67. M.B. Kant, S.D. Shinde, D. Bodas, K.R. Patil, V.G. Sathe, K.P. Adhi, S.W. Gosavi, Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography. Appl. Surf. Sci. 314, 292–300 (2014)

    ADS  Google Scholar 

  68. I. Milošev, Ž Jovanović, J.B. Bajat, R. Jančić-Heinemann, V.B. Mišković-Stanković, Surface analysis and electrochemical behavior of aluminum pretreated by vinyltriethoxysilane films in mild NaCl solution. J. Electrochem. Soc. 159(7), C303–C311 (2012)

    Google Scholar 

  69. T.P. Galhenage, D.C. Webster, A.M.S. Moreira, R.J. Burgett, S.J. Stafslien, L. Vanderwal, J.A. Finlay, S.C. Franco, A.S. Clare, Poly(ethylene) glycol-modified, amphiphilic, siloxane–polyurethane coatings and their performance as fouling-release surfaces. J. Coat. Technol. Res. 14(2), 307–322 (2016)

    Google Scholar 

  70. S. Aerts, A. Vanhulsel, A. Buekenhoudt, H. Weyten, S. Kuypers, H. Chen, M. Bryjak, L.E.M. Gevers, I.F.J. Vankelecom, P.A. Jacobs, Plasma-treated PDMS-membranes in solvent resistant nanofiltration: characterization and study of transport mechanism. J. Membr. Sci. 275(1–2), 212–219 (2006)

    Google Scholar 

  71. S.H. Tan, N.T. Nguyen, Y.C. Chua, T.G. Kang, Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4(3), 32204 (2010)

    Google Scholar 

  72. A. Öztürk, A.B. Yurtcan, Effect of calcination temperature on hydrophobicity of microporous layers prepared with two different molecular weights of PDMS polymer on PEM fuel cell performance with low Pt loading. Int. J. Hydrogen Energy 42(9), 6250–6261 (2017)

    Google Scholar 

  73. K.Q. Li, X.R. Zeng, H.Q. Li, X.J. Lai, H. Xie, Effects of calcination temperature on the microstructure and wetting behavior of superhydrophobic polydimethylsiloxane/silica coating. Colloids Surf. A 445, 111–118 (2014)

    Google Scholar 

  74. Y.G. Kim, N. Lim, J. Kim, C. Kim, J. Lee, K.H. Kwon, Study on the surface energy characteristics of polydimethylsiloxane (PDMS) films modified by C4F8/O2/Ar plasma treatment. Appl. Surf. Sci. 477, 198–203 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Granted no. 51777152), the Natural Science Foundation of Shaanxi Province (Granted no. 2021JZ-01), and the Postdoctoral Science Foundation of China (Granted no. 2020M683465). The authors thank Mr. Ren at the Instrument Analysis Center of Xi’an Jiaotong University for his assistance with SEM measurement. The authors thank Ms. Liang of Xi’an Jiaotong University for her assistance with the mechanism study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ZL, XD, LX; methodology, ZL, ZL; investigation, ZL, ZZ; writing—original draft, ZL; writing—review and editing, ZL, XD, LX; funding acquisition, XD, ZL. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xianfeng Du or Lilong Xiong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 429 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liang, Z., Du, X. et al. Effects of trace organic contamination on micro–nanostructure-induced superhydrophobic properties. Appl. Phys. A 129, 432 (2023). https://doi.org/10.1007/s00339-023-06712-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06712-z

Keywords

Navigation