Skip to main content
Log in

Effects of Dy2O3 nanoparticles on intergranular coupling and excess conductivity of low porous YBa2Cu3O7−δ superconductor ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The incorporation of foreign nanostructure oxide phase into the \({\mathrm{YBa}}_{2}{\mathrm{Cu}}_{3}{\mathrm{O}}_{7-d}\) (\(Y123\)) superconductor material is capable of producing trapping sites and upgrading the property of flux pinning (FP). Bulk ceramics with porosity around 19% ± 1% having a nominal composition \(Y123+{x\mathrm{ Dy}}_{2}{\mathrm{O}}_{3}\) are prepared via the solid-state reaction method. \({\mathrm{Dy}}_{2}{\mathrm{O}}_{3}\) nanoparticles (\({\mathrm{Dy}}_{2}{\mathrm{O}}_{3}\)-\(\mathrm{NPs}\)) with an average size of about 20 nm and content x = 0.0, 0.1, 0.2, and 0.5 wt% are considered in this study. The structure, microstructure, magnetic susceptibility, electrical properties, and fluctuation-induced conductivity were investigated in detail. The X-ray diffraction (XRD) patterns showed the existence of \({\mathrm{YBa}}_{2}{\mathrm{Cu}}_{3}{\mathrm{O}}_{7-d}\) with orthorhombic structure as a major phase. The microstructural examination using scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) spectroscopy showed that \(Dy\)-rich nano-agglomeration segregated at the grain boundaries or on the surface of Y123 grains. The volume fraction of superconductor grain (\({f}_{\mathrm{sg}}\)) and Josephson energy coupling \(({\text{E}}_{j})\) were extracted from AC susceptibility versus temperature measurements. From log–log plots of the excess conductivity versus, the reduced temperature and using the Aslamazov–Larkin model, we assessed the crossover temperatures between different regimes of conductivity, the effective thickness of the 2D layer system (d), the coherence length (\({\xi }_{\mathrm{co}}\)), the penetration depth (\({\lambda }_{o}\)), the critical current density (\({J}_{\text{c }}(0)\)) as well as the upper and the lower critical magnetic fields (\({B}_{\text{c2}}(0)\) and (\({B}_{\text{c1}}(0)\)) at zero kelvin for all the ceramics. \({\xi }_{co}\) and \({\lambda }_{o}\) decreased, while \({J}_{\text{c }}(0)\), \({B}_{\text{c2}}(0)\), and \({B}_{\text{c1}}(0)\) increased with \({\mathrm{Dy}}_{2}{\mathrm{O}}_{3}\)-NPs addition up to 0.2 wt% results in better flux trapping. The highest values of \({B}_{{\text{c}}{1}}(0)\), \({B}_{{\text{c}}{2}}(0)\), and \({J}_{\text{c}}(0)\) are found to be equal to 2.6 Tesla, 120.6 Tesla, and 65.64 × 103 A/cm2, respectively. The inclusion of a suitable amount of \({\mathrm{Dy}}_{2}{\mathrm{O}}_{3}\)-NPs into the \({\mathrm{YBa}}_{2}{\mathrm{Cu}}_{3}{\mathrm{O}}_{7-d}\) superconductor is an encouraging way for developing material with good superconducting performances for practical applications such as the second-generation HTS technologies for power transmission and fault current limiters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Slimani, S.E. Shirsath, E. Hannachi, M.A. Almessiere, M.M. Aouna, N.E. Aldossary, G. Yasin, A. Baykal, B. Ozçelik, I. Ercan, (BaTiO3)1‐x+(Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites: structure, morphology, magnetic and dielectric properties. J. Am. Ceram. Soc. 104, 5648–5658 (2021)

    Google Scholar 

  2. D.I. Shlimas, M.V. Zdorovets, A.L. Kozlovskiy, Synthesis and resistance to helium swelling of Li2TiO3 ceramics. J. Mater. Sci.: Mater. Electron. 31, 12903–12912 (2020)

    Google Scholar 

  3. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, I. Ercan, Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 30, 13509–13518 (2019)

    Google Scholar 

  4. M.V. Zdorovets, A. Arbuz, A.L. Kozlovskiy, Synthesis of LiBaZrOx ceramics with a core-shell structure. Ceram. Int. 46, 6217–6221 (2020)

    Google Scholar 

  5. Y. Slimani, B. Unal, M.A. Almessiere, E. Hannachi, G. Yasin, A. Baykal, I. Ercan, Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 31, 7786–7797 (2020)

    Google Scholar 

  6. M.H.A. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceram. Int. 46, 28877–28886 (2020)

    Google Scholar 

  7. S. Ullah, G. Yasin, A. Ahmad, L. Qin, Q. Yuan, A.U. Khan, U.A. Khan, A.U. Rahman, Y. Slimani, Construction of well-designed 1D selenium–tellurium nanorods anchored on graphene sheets as a high storage capacity anode material for lithium-ion batteries. Inorg. Chem. Front. 7, 1750 (2020)

    Google Scholar 

  8. X. Zheng, Y. Li, W. You, G. Lei, Y. Cao, Y. Zhang, L. Jiang, Construction of Fe-doped TiO2−x ultrathin nanosheets with rich oxygen vacancies for highly efficient oxidation of H2S. Chem. Eng. J. 430, 132917 (2022)

    Google Scholar 

  9. B. Wu, L. Xiao, M. Zhang, C. Yang, Q. Li, G. Li, Q. He, J. Liu, Facile synthesis of dendritic-like CeO2/rGO composite and application for detection of uric acid and tryptophan simultaneously. J. Solid State Chem. 296, 122023 (2021)

    Google Scholar 

  10. V. Loktev, Mechanisms of high-temperature superconductivity of copper oxides. Fiz. Nizk. Temp. 22, 3 (1996)

    Google Scholar 

  11. Y. Slimani, E. Hannachi, M. Ben Salem, F. Ben Azzouz, M. Ben Salem, Comparative study of electrical transport and magnetic measurements of Y3Ba5Cu8O18±δ and YBa2Cu3O7−δ compounds: intragranular and intergranular superconducting properties. Appl. Phys. A 124, 1 (2018)

    Google Scholar 

  12. M.B. Maple, High-temperature superconductivity. J. Magn. Magn. Mater. 177, 18 (1998)

    ADS  Google Scholar 

  13. J. Skakle, Crystal chemical substitutions and doping of YBa2Cu3Ox and related superconductors. Mater. Sci. Eng. R Rep. 23, 1 (1998)

    Google Scholar 

  14. M.K. Ben Salem, E. Hannachi, Y. Slimani, A. Hamrita, M. Zouaoui, L. Bessais, M. Ben Salem, F. Ben Azzouz, SiO2 nanoparticles addition effect on microstructure and pinning properties in YBa2Cu3Oy. Ceram. Int. 40(3), 4953–4962 (2014)

    Google Scholar 

  15. E. Hannachi, Y. Slimani, A. Ekicibil, A. Manikandan, F.B. Azzouz, Excess conductivity and AC susceptibility studies of Y-123 superconductor added with TiO2 nano-wires. Mater. Chem. Phys. 235, 121721 (2019)

    Google Scholar 

  16. N. Strickland, N. Long, E. Talantsev, P. Hoefakker, J. Xia, M. Rupich, T. Kodenkandath, W. Zhang, X. Li, Y. Huang, Enhanced flux pinning by BaZrO3 nanoparticles in metal-organic deposited YBCO second-generation HTS wire. Physica C Supercond. 468, 183 (2008)

    ADS  Google Scholar 

  17. Y. Slimani, E. Hannachi, M.A. Almessiere, H.S. Aldosari, S.A. Alotaibi, F.B. Azzouz, Investigation of transport properties, flux pinning mechanisms and fluctuations induced conductivity of SiO2 nanoparticles doped YBa2Cu3O7-d thick films on silver substrates. Ceram. Int. 48, 10721 (2021)

    Google Scholar 

  18. E. Hannachi, M.A. Almessiere, Y. Slimani, R.B. Alshamrani, G. Yasin, F. Ben Azzouz, Preparation and characterization of high-Tc (YBa2Cu3O7-δ)1–x/(CNTs)x superconductors with highly boosted superconducting performances. Ceram. Int. 47, 23539 (2021)

    Google Scholar 

  19. N. N. Mohd Yusuf, M. M. Awang Kechik, H. Baqiah, C. Soo Kien, L. Kean Pah, A. H. Shaari, W. N. W. Wan Jusoh, S. I. Abd Sukor, M. Mousa Dihom and Z. A. Talib, Structural and superconducting properties of thermal treatment-synthesised bulk YBa2Cu3O7−δ superconductor: effect of addition of SnO2 nanoparticles, Material 12: 92 (2018)

  20. P. Mele, K. Matsumoto, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, R. Kita, Systematic study of the BaSnO3 insertion effect on the properties of YBa2Cu3O7−x films prepared by pulsed laser ablation. Supercond. Sci. Technol. 21, 125017 (2008)

    ADS  Google Scholar 

  21. N.M. Hapipi, S.K. Chen, A.H. Shaari, M.M.A. Kechik, K.B. Tan, K.P. Lim, Superconductivity of Y2O3 and BaZrO3 nanoparticles co-added YBa2Cu3O7−δ bulks prepared using co-precipitation method. J. Mater. Sci.: Mater. Electron. 29, 18684 (2018)

    Google Scholar 

  22. D. Feldmann, T. Holesinger, B. Maiorov, S. Foltyn, J. Coulter, I. Apodaca, mproved flux pinning in YBa2Cu3O7 with nanorods of the double perovskite Ba2YNbO6. Supercond. Sci. Technol. 23, 095004 (2010)

    ADS  Google Scholar 

  23. Y. Slimani, E. Hannachi, A. Ekicibil, M.A. Almessiere, F. Ben Azzouz, Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. J. Alloys Compd. 781, 664–673 (2019)

    Google Scholar 

  24. M. Dahiya, R. Kumar, D. Kumar, N. Khare, Comparative study of dimensionality and superconducting parameters in YBCO-NaNbO3 nanoparticles- and nanorods-added composite sample from excess conductivity analysis. Appl. Phys. A 128, 308 (2022)

    ADS  Google Scholar 

  25. G. Shams, M. Ranjbar, Conductivity fluctuation and some parameters of high temperature superconductor polycrystalline Y1Ba2Cu3O7−δ doped with silver nanoparticles. Braz. J. Phys. 49, 808 (2019)

    ADS  Google Scholar 

  26. R. Terzioglu, G. Aydin, N. SoyluKoc, C. Terzioglu, Investigation of the structural, magnetic and electrical properties of the Au doped YBCO superconductors. J. Mater. Sci. Mater. Electron. 30, 2265 (2019)

    Google Scholar 

  27. B.A. Malik, M.A. Malik, K. Asokan, Enhancement of the critical current density in YBCO/Ag composites. Chin. J. Phys. 55, 170 (2017)

    Google Scholar 

  28. Y. Slimani, M. Almessiere, E. Hannachi, M. Mumtaz, A. Manikandan, A. Baykal, F.B. Azzouz, Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor. Ceram. Int. 45, 6828 (2019)

    Google Scholar 

  29. R. Algarni, M.A. Almessiere, Y. Slimani, E. Hannachi, F. Ben Azzouz, Enhanced critical current density and flux pinning traits with Dy2O3 nanoparticles added toYBa2Cu3O7-d superconductor. J. Alloys Compd. 852, 157019 (2021)

    Google Scholar 

  30. R. Algarni, Y. Slimani, E. Hannachi, M.A. Almessiere, B.H. Alqahtani, S. Akhtar, F. Ben Azzouz, Intergrain connectivity in YBa2Cu3O7-δ superconductor added with Dy2O3 nanoparticles: AC susceptibility investigation. Curr. Appl. Phys. 27, 89 (2021)

    ADS  Google Scholar 

  31. S. Brandstetter, P.M. Derlet, S. Van Petegem, H. Van, Swygenhoven, Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations. Acta Mater. 56, 165 (2008)

    ADS  Google Scholar 

  32. Y. Slimani, M.A. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F. Ben Azzouz, Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45, 2621 (2019)

    Google Scholar 

  33. M.A. Almessiere, Y. Slimani, E. Hannachi, R. Algarni, F. Ben Azzouz, Impact of Dy2O3 nanoparticles additions on the properties of porous YBCO ceramics. J. Mater. Sci. Mater. Electron. 30, 17572 (2019)

    Google Scholar 

  34. J. MacManus-Driscoll, S.C. Wimbush, Processing and application of high-temperature superconducting coated conductors. Nat. Rev. Mater. 6, 587 (2021)

    ADS  Google Scholar 

  35. P. Benzi, E. Bottizzo, N. Rizzi, Oxygen determination from cell dimensions in YBCO superconductors. J. Cryst. Growth 269, 625 (2004)

    ADS  Google Scholar 

  36. R. Giri, V.P.S. Awana, H.K. Singh, R.S. Tiwari, O.N. Srivastava, A. Gupta, B.V. Kumaraswamy, H. Kishan, Effect of Ca doping for Y on structural/microstructural and superconducting properties of YBa2Cu3O7-d. Physica C 419, 101 (2005)

    ADS  Google Scholar 

  37. K.D. Bagarinao, H. Yamasaki, J.C. Nie, M. Murugesan, O. Haruhiko, N. Yoshihiko, Control of porosity and composition in large-area YBCO films to achieve micrometer thickness and High Jc on sapphire substrates. IEEE Appl. Supercond. 15, 2962 (2005)

    ADS  Google Scholar 

  38. A.I. Larkin, Yu.N. Ovchinnikov, Pinning in type II superconductors. J. Low Temp. Phys. 34, 409 (1979)

    ADS  Google Scholar 

  39. S. Çelebi, A.I. Malik, F. Inanir, S.A. Halim, Effect of Nd doping on the grain-matrix contribution to ac losses in sintered Bi1.6Pb0.4Sr2(Ca1xNdx)2Cu3Oδ superconductors. J. Alloys Compd. 370, 69 (2004)

    Google Scholar 

  40. E. Hannachi, M.A. Almessiere, Y. Slimani, A. Baykal, F. Ben Azzouz, AC susceptibility investigation of YBCO superconductor added by carbon nanotubes. J. Alloys Compd. 812, 152150 (2020)

    Google Scholar 

  41. M. Buchgeister, W. Hiller, S.M. Hosseini, K. Kopitzki, D. Wagener, Critical temperature and normal-state resistivity of 1–2–3 HTC-superconductors in dependence of the oxygen stoichiometry. In: Proc. Inter. Conf. on Transport properties of Superconductors 25 (1990).

  42. L. Aslamasov, A. Larkin, The influence of fluctuation pairing of electrons on the conductivity of normal metal. Phys. Lett. A 26, 238 (1968)

    ADS  Google Scholar 

  43. W. Lawrence and S. Doniach, Theory of layer-structure superconductors, In: Proceeding of 12th International Conference of Low Temp. Phys. 361 (1971)

  44. K. Maki, R. Thompson, Fluctuation conductivity of high-Tc superconductors. Phys. Rev. B 39, 2767 (1989)

    ADS  Google Scholar 

  45. Y. Slimani, E. Hannachi, M.K. Ben Salem, A. Hamrita, M. Ben Salem, F. Ben Azzouz, Excess conductivity study in nano-CoFe2O4-added YBa2Cu3O7−d and Y3Ba5Cu8O18±x superconductors. J. Supercond. Nov. Magn. 28, 3001–3010 (2015)

    Google Scholar 

  46. Y. Slimani, E. Hannachi, M. Zouaoui, F. Ben Azzouz, M. Ben Salem, Excess conductivity investigation of Y3Ba5Cu8O18±δ superconductors prepared by various parameters of planetary ball milling technique. J. Supercond. Nov. Magn. 31, 2339–2348 (2018)

    Google Scholar 

  47. M. Kaur, R. Srinivasan, G.K. Mehta, D. Kanjilal, R. Pinto, S.B. Ogale, S. Mohan, V. Ganesan, Effect of disorder on the exponent in the coherence region in high temperature superconductors. Physica C 443, 61 (2006)

    ADS  Google Scholar 

  48. P. Sunwong, J.S. Higgins, Y.T. Sui, M.J. Raine, D.P. Hampshire, The critical current density of grain boundary channels in polycrystalline HTS and LTS superconductors in magnetic fields. Supercond. Sci. Technol. 26, 095006 (2013)

    ADS  Google Scholar 

  49. M. Dahiya, R. Kumar, D. Kumar, N. Khare, Comparative study of dimensionality and superconducting parameters in YBCO–NaNbO3 nanoparticles- and nanorods-added composite sample from excess conductivity analysis. Appl. Phys. A 128, 308 (2022)

    ADS  Google Scholar 

  50. B. Oh, K. Char, A.D. Kent, M. Naito, M.R. Beasley, T.H. Geballe, R.H. Hammond, A. Kapitulnik, J.M. Graybeal, Upper critical field, fluctuation conductivity, and dimensionality of YBa2Cu3O7−x. Phys. Rev. B 37, 7861 (1988)

    ADS  Google Scholar 

  51. M. Rasti, M.R. Mohammadizadeh, Fluctuation conductivity in MOD-derived YBCO thin films. J. Supercond. Nov. Magn. 34, 705 (2021)

    Google Scholar 

  52. G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994)

    ADS  Google Scholar 

  53. D. Dew-Hughes, Flux pinning mechanisms in type II superconductors. Philos. Mag. 30, 293 (1974)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the Institute for Research and Medical Consultations (IRMC) and Basic and Applied Scientific Research Center (BASRC) of Imam Abdulrahman Bin Faisal University (Dammam, Saudi Arabia) for providing laboratory facilities.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

RAA: investigation, formal analysis. GMA: investigation, formal analysis. TMA: investigation, formal analysis. YS: validation, investigation, formal analysis, resources, writing—original draft, writing—review and editing. EH: investigation, writing—original draft, writing—review and editing. MAA: investigation, resources. FBA: conceptualization, methodology, validation, formal analysis, writing—original draft, writing—review and editing, supervision.

Data availability statement

All data generated or analyzed during this study are included in this published article.

Corresponding authors

Correspondence to Yassine Slimani or Faten Ben Azzouz.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algarni, R.A., Alharbi, G.M., Alqahtani, T.M. et al. Effects of Dy2O3 nanoparticles on intergranular coupling and excess conductivity of low porous YBa2Cu3O7−δ superconductor ceramic. Appl. Phys. A 129, 434 (2023). https://doi.org/10.1007/s00339-023-06709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06709-8

Keywords

Navigation