Skip to main content

Advertisement

Log in

Transition metal oxide assisted quaternary nanoarchitectonics based composite towards enhanced electrochemical energy storage performance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Herein, we report the large-scale synthesis and compare the effect of transition metal oxide (Co3O4/Fe3O4) nanoparticles assistance on electrochemical energy storage performance of zinc oxide (ZnO)-graphene oxide (GO)-polyaniline (PANI) nanocomposites. The resultant quaternary nanoarchitectonics composites of Co3O4–ZnO–GO–PANI (S1) and Fe3O4–ZnO–GO–PANI (S2) exhibit layered fibrous structure on the surface, where these fibers form a porous and mesh-like network. The systematic electrochemical analyses reveal that S1 has better electrochemical performance as compared to S2. Specifically, S1 has a higher specific capacitance (246.33 F/g) relative to S2 (110.17 F/g) at a current density of 1 A/g due to higher reduction potential of Co (+ 1.81 V) than that of Fe (0.77 V). This higher potential causes Co to be more reactive in the redox transitions than Fe. Moreover, the enhanced ionic intercalation and improved electrical conductivity associated with their specific morphology plays a role to enhance the energy storage performances. Therefore, Co3O4–ZnO–GO–PANI nanoarchitectonics composite can be used as a promising electrode material for high-performance energy storage device fabrication.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirms that the data supporting the findings of this study are available within this published article (and its supplementary information files).

References

  1. C. Sanchez, B. Julian, P. Belleville, M. Popall, J. Mater. Chem. 15, 3559 (2005)

    Google Scholar 

  2. K. Ariga, Nanoscale Horiz. 6, 364 (2021)

    ADS  Google Scholar 

  3. K. Ariga, R. Fakhrullin, Bull. Chem. Soc. Jpn. 95, 774 (2022)

    Google Scholar 

  4. M. Peng, L. Wang, L. Li, Z. Peng, X. Tang, T. Hu, K. Yuan, Y. Chen, eScience 1, 83 (2021)

    Google Scholar 

  5. X. Feng, X. Shi, J. Ning, D. Wang, J. Zhang, Y. Hao, Z.S. Wu, eScience 1, 124 (2021)

    Google Scholar 

  6. F. Perera, Int. J. Environ. Res. Public Health 15, 16 (2018)

    Google Scholar 

  7. F. Perera, N. Engl. J. Med. 386, 2303 (2022)

    Google Scholar 

  8. P. Lu, D. Xue, H. Yang, Y. Liu, Int J Smart Nano Mater. 4, 2 (2013)

    Google Scholar 

  9. V.K. Thakur, Nanomaterials 10, 1817 (2020)

    Google Scholar 

  10. B.K. Kim, S. Sy, A. Yu, J. Zhang, Handb. Clean Energy Syst. 1, 25 (2015)

    ADS  Google Scholar 

  11. A. Gonzalez, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sust. Energ. Rev. 58, 1189 (2016)

    Google Scholar 

  12. J. Li, C. Zhao, Y. Yang, C. Li, T. Hollenkamp, N. Burke, Z.Y. Hu, G.V. Tendeloo, W. Chen, J. Alloys Compd. 810, 151841 (2019)

    Google Scholar 

  13. F. Chen, P. Wan, H. Xu, X. Sun, A.C.S. Appl, Mater. Interfaces. 9, 17865 (2017)

    Google Scholar 

  14. S. Palchoudhury, K. Ramasamy, R.K. Gupta, A. Gupta, Front. Mater. 5, 83 (2019)

    ADS  Google Scholar 

  15. S.K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H.S. Nalwa, RSC Adv. 9, 8778 (2019)

    ADS  Google Scholar 

  16. S. Majumder, B. Satpati, S. Kumar, S. Banerjee, ACS Appl. Nano Mater. 1, 3945 (2018)

    Google Scholar 

  17. N.A. Zubir, C. Yacou, J. Motuzas, X. Zhang, J.C.D. Costa, Sci. Rep. 4, 4594 (2014)

    Google Scholar 

  18. V. Sharma, I. Singh, A. Chandra, Sci. Rep. 8, 1307 (2018)

    ADS  Google Scholar 

  19. S. Ghosh, B. Sanjeev, M. Gupta, A.B.V.K. Kumar, Ceram. Int. 45, 1314 (2019)

    Google Scholar 

  20. C. Pushpalatha, J. Suresh, V.S. Gayathri, S.V. Sowmya, D. Augustine, A. Alamoudi, B. Zidane, N. Albar, S. Patil, Front. Bioeng. Biotechnol. 10, 917990 (2022)

    Google Scholar 

  21. P.J. Lu, S.C. Huang, Y.P. Chen, L.C. Chiueh, D.Y.C. Shih, J. Food Drug. Anal. 23, 587 (2015)

    Google Scholar 

  22. M. Yadav, N. Singh, A. Kumar, J. Mater. Sci. Mater. Electron. 29, 6853 (2018)

    Google Scholar 

  23. M. Saranya, R. Ramachandran, F. Wang, J Sci.-Adv. Mater. Dev. 1, 454 (2016)

    Google Scholar 

  24. R. Ranjithkumar, S.E. Arasi, S. Sudhahar, N. Nallamuthu, P. Devendran, P. Lakshmanan, M.K. Kumar, Phys. B: Condens. Matter. 568, 51 (2019)

    ADS  Google Scholar 

  25. Y. Haldorai, W. Voit, J. Shim, Electrochim. Acta. 120, 65 (2014)

    Google Scholar 

  26. C. An, Y. Zhang, H. Guo, Y. Wang, Nanoscale Adv. 1, 4644 (2019)

    ADS  Google Scholar 

  27. Q. Gao, J. Wanga, B. Ke, J. Wang, Y. Li, Ceram. Int. 44, 18770 (2018)

    Google Scholar 

  28. C.K. Brozek, D. Zhou, H. Liu, X. Li, K.R. Kittilstved, D.R. Gamelin, ACS Nano Lett. 18, 3297 (2018)

    ADS  Google Scholar 

  29. G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1 (2011)

    ADS  Google Scholar 

  30. Q. Feng, A.L. Zhong, J.Y. Pei, Y. Zhao, D.L. Zhang, D.F. Liu, Y.X. Zhang, Z.M. Dang, Chem. Rev. 122, 3820 (2022)

    Google Scholar 

  31. H. Wang, J. Lin, Z.X. Shen, J. Sci.-Adv. Mater. Dev. 1, 225 (2016)

    Google Scholar 

  32. S. Ishaq, M. Moussa, F. Kanwal, M. Eshan, M. Saleem, T.N. Van, D. Losic, Sci. Rep. 9, 5974 (2019)

    ADS  Google Scholar 

  33. W.K. Chee, H.N. Lim, I. Harrison, K.F. Chong, Z. Zainal, C.H. Ng, N.M. Huang, Electrochim. Acta. 157, 88 (2015)

    Google Scholar 

  34. Y.S. Lim, Y.P. Tan, H.N. Lim, N.M. Huang, W.T. Tan, M.A. Yarmo, C.Y. Yin, Ceram. Int. 40, 3855 (2014)

    Google Scholar 

  35. K. Qu, Y. Bai, M. Deng, J. Electrochem. Soc. 168, 120542 (2021)

    ADS  Google Scholar 

  36. M. Handayani, Y. Mulyaningsih, M.A. Anggoro, A. Abbas, I. Setiawan, F. Triawan, N. Darsono, Y.N. Thaha, I. Kartika, G.K. Sunnardianto, I. Anshori, G. Lisak, Mater. Lett. 314, 131846 (2022)

    Google Scholar 

  37. S. Palsaniya, H.B. Nemade, A.K. Dasmahapatra, J. Phys. Chem. Solids 154, 110081 (2021)

    Google Scholar 

  38. X. Li, C. Zhang, S. Xin, Z. Yang, Y. Lid, D. Zhang, P. Yao, ACS Appl. Mater. Interfaces 8, 21373 (2016)

    Google Scholar 

  39. W.K. Chee, H.N. Lim, N.M. Huang, Int. J. Energy Res. 39, 111 (2015)

    Google Scholar 

  40. K. Lee, C.W. Park, S.J. Lee, J.D. Kim, J. Alloys Compd. 739, 522 (2018)

    Google Scholar 

  41. J. Kalaiarasi, C. Pragathiswaran, P. Subramani, J. Mol. Struct. 1242, 130704 (2021)

    Google Scholar 

  42. A. Moyseowicz, A. Sliwak, E. Miniach, G. Gryglewicz, Compos. B. Eng 109, 23 (2017)

    Google Scholar 

  43. Y. Guo, B. Chang, T. Wen, C. Zhao, H. Yin, Y. Zhou, Y. Wang, B. Yang, S. Zhang, RSC Adv. 6, 19394 (2016)

    ADS  Google Scholar 

  44. C.R. Mariappan, V. Gajraj, S. Gade, A. Kumar, S. Dsoke, S. Indris, H. Ehrenberg, G. VijayaPrakash, R. Jose, J. Electroanal. Chem. 845, 72 (2019)

    Google Scholar 

  45. Y.J. Peng, T.-H. Wu, C.-T. Hsu, S.-M. Li, M.-G. Chen, C.-C. Hu, J. Power Sources 272, 970 (2014)

    ADS  Google Scholar 

  46. R. Tummala, R.K. Guduru, P.S. Mohanty, J. Power Sources 209, 44 (2012)

    Google Scholar 

  47. Q. Guan, J. Cheng, B. Wang, W. Ni, G. Gu, X. Li, L. Huang, G. Yang, F. Nie, ACS Appl. Mater. Interfaces 6, 7626 (2014)

    Google Scholar 

  48. Q. Wang, L. Jiao, H. Du, Y. Wang, H. Yuan, J. Power Sources. 245, 110 (2014)

    Google Scholar 

  49. D. Su, L. Zhang, Z. Tang, T. Yu, H. Liu, J. Zhang, Y. Liu, A. Yuan, Q. Kong, Nanosci. Nanotechnol. 18, 7 (2018)

    Google Scholar 

  50. S. Majumder, M. Sardar, B. Satpati, S. Kumar, S. Banerjee, J. Phys. Chem. C. 122, 21356 (2018)

    Google Scholar 

  51. S. Majumder, S. Banerjee, Microsc. Microanal. 25, 1394 (2019)

    ADS  Google Scholar 

  52. J. Sun, H. Wang, Y. Li, M. Zhao, J. Porous Mater. 28, 889 (2021)

    Google Scholar 

  53. V.P. Dinesh, P. Biji, A. Ashok, S.K. Dhara, M. Kamruddin, A.K. Tyagib, B. Raj, RSC Adv. 4, 58930 (2014)

    ADS  Google Scholar 

  54. S. Yang, S. Zhu, R. Hong, Coating 10, 1215 (2020)

    Google Scholar 

  55. F.T. Johra, J.W. Lee, W.G. Jung, J. Ind. Eng. Chem. 20, 2883 (2014)

    Google Scholar 

  56. K. He, F.-X. Ma, Xu. Cheng-Yan, J. Cumings, J. Appl. Phys. 113, 17B528 (2013)

    Google Scholar 

  57. L. Zhang, H. Li, B. Yang, Y. Zhou, Z. Zhang, Y. Wang, J. Solid State Electrochem. 23, 3287 (2019)

    Google Scholar 

  58. Y.C. Liang, C.C. Wang, RSC Adv. 8, 5063 (2018)

    ADS  Google Scholar 

  59. N. Maity, A. Mandal, A.K. Nandi, J. Mater. Chem. C 5, 12121 (2017)

    Google Scholar 

  60. G. Strack, S. Babanova, K. Farrington, H.R. Huckarift, P. Atanassov, G.R. Johnson, J. Electrochem. Soc. 160, G3178 (2013)

    Google Scholar 

Download references

Acknowledgements

One of the authors (S.M.) gratefully acknowledges Swiss Govt Excellence Scholarship ((ESKAS Nr. 2021.0203) for providing Postdoctoral research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Majumder.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 857 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Majumder, S. & Banerjee, S. Transition metal oxide assisted quaternary nanoarchitectonics based composite towards enhanced electrochemical energy storage performance. Appl. Phys. A 129, 384 (2023). https://doi.org/10.1007/s00339-023-06661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06661-7

Keywords

Navigation