Abstract
The dependence of photoluminescence (PL) on sulfurization temperature of the Cu2SnS3 (CTS) thin films was investigated. CTS thin films were prepared at various sulfurization temperatures in the range of 500–600 ℃, and differences in the conversion efficiency of solar cells with the CTS thin films as absorption layer and the crystal structure of the CTS thin films were observed. In low-conversion-efficiency CTS films, which were a mix of monoclinic and cubic crystals, the PL spectrum only showed donor–acceptor pair (DAP) recombination luminescence due to deep defects. In high-conversion-efficiency CTS thin films, which contained only monoclinic crystals, the PL spectrum showed DAP recombination luminescence originating from the same deep defects. In addition band-edge luminescence was observed at room temperature. Thus, it was found that the conversion efficiency and crystal structure of CTS thin film can be easily estimated from PL measurements.
Similar content being viewed by others
Data availability
The numerical data used to plot the graph are available from the corresponding author on reasonable request.
References
T.A. Kuku, O.A. Fakolujo, Photovoltaic characteristics of thin films of Cu2SnS3. Sol. Energy Mater. 16, 199–204 (1987). https://doi.org/10.1016/0165-1633(87)90019-0
J. Chantana, K. Suzuki, T. Minemoto, Introduction of Na into Cu2SnS3 thin film for improvement of its photovoltaic performances. Sol. Energy Mater. Sol. Cells 168, 207–213 (2017). https://doi.org/10.1016/j.solmat.2017.04.040
J. Chantana, K. Tai, H. Hayashi, T. Nishimura, Y. Kawano, T. Minemoto, Investigation of carrier recombination of Na-doped Cu2SnS3 solar cell for its improved conversion efficiency of 5.1%. Sol. Energy Mater. Sol. Cells 206, 110261 (2020). https://doi.org/10.1016/j.solmat.2019.110261
A. Kanai, K. Toyonaga, K. Chino, H. Katagiri, H. Araki, Fabrication of Cu2SnS3 thin-film solar cells with power conversion efficiency of over 4%. Jpn. J. Appl. Phys. 54, 08KC06 (2015). https://doi.org/10.7567/JJAP.54.08KC06
M. Nakashima, J. Fujimoto, T. Yamaguchi, M. Izaki, Cu2SnS3 thin-film solar cells fabricated by sulfurization from NaF/Cu/Sn stacked precursor. Appl. Phys. Exp. 8, 042303 (2015). https://doi.org/10.7567/APEX.8.042303
K. Suzuki, J. Chantana, T. Minemoto, Na role during sulfurization of NaF/Cu/SnS2 stacked precursor for formation of Cu2SnS3 thin film as absorber of solar cell. Appl. Surf. Sci. 414, 140–146 (2017). https://doi.org/10.1016/j.apsusc.2017.04.099
A. Kanai, M. Sugiyama, Na induction effects for J-V properties of Cu2SnS3 (CTS) solar cells and fabrication of a CTS solar cell over-5.2% efficiency. Sol. Energy Mater. Sol. Cells 231, 111315 (2021). https://doi.org/10.1016/j.solmat.2021.111315
W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034
M. Onoda, X.A. Chen, A. Sato, H. Wada, Crystal structure and twinning of monoclinic Cu2SnS3. Mater. Res. Bull. 35, 1563 (2000). https://doi.org/10.1016/S0025-5408(00)00347-0
D.M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, P.J. Dale, Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films 520, 6291–6294 (2012). https://doi.org/10.1016/j.tsf.2012.05.085
H. Guan, H. Shen, C. Gao, X. He, Structural and optical properties of Cu2SnS3 and Cu3SnS4 thin films by successive ionic layer adsorption and reaction. J. Mater. Sci. Mater. Electron. 24, 1490 (2013). https://doi.org/10.1007/s10854-012-0960-x
H. Zhang, M. Xie, S. Zhang, Y. Xiang, Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors. J. Alloys Compd. 602, 199–203 (2014). https://doi.org/10.1016/j.jallcom.2014.03.014
P.A. Fernandes, P.M.P. Salomé, A.F.D. Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J. Phys. D Appl. Phys. 43, 215403 (2010). https://doi.org/10.1088/0022-3727/43/21/215403
R. Chierchia, F. Pigna, M. Valentini, C. Malerba, E. Salza, P. Mangiapane, T. Polichetti, A. Mittig, Cu2SnS3 based solar cell with 3% efficiency. Phys. Stat. Sol. C 13, 35–39 (2016). https://doi.org/10.1002/pssc.201510115
S. Sato, H. Sumi, G. Shi, M. Sugiyama, Investigation of the sulfurization process of Cu2SnS3 thin films and estimation of band offsets of Cu2SnS3-related solar cell structure. Phys. Stat. Sol. C 12, 757–760 (2015). https://doi.org/10.1002/pssc.201400294
N. Aihara, H. Araki, A. Takeuchi, K. Jimbo, H. Katagiri, Fabrication of Cu2SnS3 thin films by sulfurization of evaporated Cu-Sn precursors for solar cells. Phys. Stat. Sol. C 10, 1086–1092 (2013). https://doi.org/10.1002/pssc.201200866
J. Koike, K. Chino, N. Aihara, H. Araki, R. Nakamura, K. Jimbo, H. Katagiri, Cu2SnS3 thin-film solar cells from electroplated precursors. Jpn. J. Appl. Phys. 51, 10NC34 (2012). https://doi.org/10.1143/JJAP.51.10NC34
N. Aihara, K. Tanaka, H. Uchiki, A. Kanai, H. Araki, Donor-acceptor pair recombination luminescence from monoclinic Cu2SnS3 thin film. Appl. Phys. Lett. 107, 032101 (2015). https://doi.org/10.1063/1.4927203
Y. Matsumoto, N. Aihara, A. Munemura, K. Tanaka, Preparation of monoclinic Cu2SnS3 single crystal by chemical vapor transport with iodine. Mater. Lett. 170, 213–216 (2016). https://doi.org/10.1016/j.matlet.2016.02.039
N. Aihara, Y. Matsumoto, K. Tanaka, Exciton luminescence from Cu2SnS3 bulk crystals. Appl. Phys. Lett. 108, 092107 (2016). https://doi.org/10.1063/1.4943229
K. Tanaka, T. Maeda, H. Araki, Photoluminescence observation of the effects of Cu/Sn ratio and Na addition on Cu2SnS3. Sol. Energy 199, 143–151 (2020). https://doi.org/10.1016/j.solener.2020.02.014
D. Motai, M. Kobayashi, R. Ohashi, K. Watanabe, Y. Hosokawa, K. Jimbo, Y. Akaki, H. Araki, Sulfurization temperature dependence of Na-added Cu2SnS3 thin films prepared on an alkali-free substrate. J. Ternary Multinary Compd. (2020). https://doi.org/10.57386/tmc.2020.0_44
D.M. Berg, R. Djemour, L. Gütay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, A. Pérez-Rodriguez, Raman analysis of monoclinic Cu2SnS3 thin films. Appl. Phys. Lett. 100, 192103 (2012). https://doi.org/10.1063/1.4712623
Y. Dong, X. Lu, P. Shen, Y. Chen, F. Yue, P. Xiang, L. Sun, P. Yang, J. Chu, Strategic improvement of Cu2SnS3 thin film by different heating rates and photoluminescence investigation. Mater. Sci. Semicond. Proc. 84, 124–130 (2018). https://doi.org/10.1016/j.mssp.2018.05.012
T. Schmidt, K. Lischka, W. Zulehner, Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 8989–8994 (1992). https://doi.org/10.1103/PhysRevB.45.8989
J.P. Teixeira, R.A. Sousa, M.G. Sousa, A.F. da Cunha, P.A. Fernandes, P.M.P. Salome, J.C. Gonzalez, J.P. Leitao, Comparison of fluctuating potentials and donor-acceptor pair transitions in a Cu-poor Cu2ZnSnS4 based solar cell. Appl. Phys. Lett. 105, 63901 (2014). https://doi.org/10.1063/1.4899057
I. Dirnstorfer, M. Wagner, D.M. Hofmann, M.D. Lampert, F. Karg, B.K. Meyer, Characterization of CuIn(Ga)Se2 thin films. Phys. Stat. Sol. A 168, 163–175 (1998). https://doi.org/10.1002/(SICI)1521-396X(199807)168:1%3C163::AID-PSSA163%3E3.0.CO;2-T
K. Tanaka, R, Mori, Photoluminescence properties and defects in CuBr1-xIx thin films and their dependence on halogen ratio. J. Sol. State. Chem. 293, 121786 (2021). https://doi.org/10.1016/j.jssc.2020.121786
N. Aihara, Y. Matsumoto, K. Tanaka, Photoluminescence characterization of Cu2GeS3 bulk crystals. Phys. Stat. Sol. B 254, 1700118 (2017). https://doi.org/10.1002/pssb.201700118
A. Crovetto, R. Chen, R.B. Ettlinger, A.C. Cazzaniga, J. Schou, C. Persson, O. Hansen, Dielectric function and double absorption onset of monoclinicCu2SnS3: origin of experimental features explained by first-principles calculations. Sol. Energy Mater. Sol. Cells 154, 121–129 (2016). https://doi.org/10.1016/j.solmat.2016.04.028
A. Kanai, M. Sugiyama, Emission properties of intrinsic and extrinsic defects in Cu2SnS3 thin films and solar cells. Jpn. J. Appl. Phys. 60, 015504 (2021). https://doi.org/10.35848/1347-4065/abcf06
Acknowledgements
This work was supported by JSPS KAKENHI [JP19H02663] and [JP20H02680]. Mr. K. Watanabe supported the sulfurization process of the samples.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tanaka, K., Miyagi, S., Motai, D. et al. Dependence of photoluminescence on sulfurization temperature of Cu2SnS3 thin films. Appl. Phys. A 129, 360 (2023). https://doi.org/10.1007/s00339-023-06641-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-023-06641-x