Skip to main content
Log in

Dependence of photoluminescence on sulfurization temperature of Cu2SnS3 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The dependence of photoluminescence (PL) on sulfurization temperature of the Cu2SnS3 (CTS) thin films was investigated. CTS thin films were prepared at various sulfurization temperatures in the range of 500–600 ℃, and differences in the conversion efficiency of solar cells with the CTS thin films as absorption layer and the crystal structure of the CTS thin films were observed. In low-conversion-efficiency CTS films, which were a mix of monoclinic and cubic crystals, the PL spectrum only showed donor–acceptor pair (DAP) recombination luminescence due to deep defects. In high-conversion-efficiency CTS thin films, which contained only monoclinic crystals, the PL spectrum showed DAP recombination luminescence originating from the same deep defects. In addition band-edge luminescence was observed at room temperature. Thus, it was found that the conversion efficiency and crystal structure of CTS thin film can be easily estimated from PL measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The numerical data used to plot the graph are available from the corresponding author on reasonable request.

References

  1. T.A. Kuku, O.A. Fakolujo, Photovoltaic characteristics of thin films of Cu2SnS3. Sol. Energy Mater. 16, 199–204 (1987). https://doi.org/10.1016/0165-1633(87)90019-0

    Article  Google Scholar 

  2. J. Chantana, K. Suzuki, T. Minemoto, Introduction of Na into Cu2SnS3 thin film for improvement of its photovoltaic performances. Sol. Energy Mater. Sol. Cells 168, 207–213 (2017). https://doi.org/10.1016/j.solmat.2017.04.040

    Article  Google Scholar 

  3. J. Chantana, K. Tai, H. Hayashi, T. Nishimura, Y. Kawano, T. Minemoto, Investigation of carrier recombination of Na-doped Cu2SnS3 solar cell for its improved conversion efficiency of 5.1%. Sol. Energy Mater. Sol. Cells 206, 110261 (2020). https://doi.org/10.1016/j.solmat.2019.110261

    Article  Google Scholar 

  4. A. Kanai, K. Toyonaga, K. Chino, H. Katagiri, H. Araki, Fabrication of Cu2SnS3 thin-film solar cells with power conversion efficiency of over 4%. Jpn. J. Appl. Phys. 54, 08KC06 (2015). https://doi.org/10.7567/JJAP.54.08KC06

    Article  Google Scholar 

  5. M. Nakashima, J. Fujimoto, T. Yamaguchi, M. Izaki, Cu2SnS3 thin-film solar cells fabricated by sulfurization from NaF/Cu/Sn stacked precursor. Appl. Phys. Exp. 8, 042303 (2015). https://doi.org/10.7567/APEX.8.042303

    Article  ADS  Google Scholar 

  6. K. Suzuki, J. Chantana, T. Minemoto, Na role during sulfurization of NaF/Cu/SnS2 stacked precursor for formation of Cu2SnS3 thin film as absorber of solar cell. Appl. Surf. Sci. 414, 140–146 (2017). https://doi.org/10.1016/j.apsusc.2017.04.099

    Article  ADS  Google Scholar 

  7. A. Kanai, M. Sugiyama, Na induction effects for J-V properties of Cu2SnS3 (CTS) solar cells and fabrication of a CTS solar cell over-5.2% efficiency. Sol. Energy Mater. Sol. Cells 231, 111315 (2021). https://doi.org/10.1016/j.solmat.2021.111315

    Article  Google Scholar 

  8. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034

    Article  ADS  Google Scholar 

  9. M. Onoda, X.A. Chen, A. Sato, H. Wada, Crystal structure and twinning of monoclinic Cu2SnS3. Mater. Res. Bull. 35, 1563 (2000). https://doi.org/10.1016/S0025-5408(00)00347-0

    Article  Google Scholar 

  10. D.M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, P.J. Dale, Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films 520, 6291–6294 (2012). https://doi.org/10.1016/j.tsf.2012.05.085

    Article  ADS  Google Scholar 

  11. H. Guan, H. Shen, C. Gao, X. He, Structural and optical properties of Cu2SnS3 and Cu3SnS4 thin films by successive ionic layer adsorption and reaction. J. Mater. Sci. Mater. Electron. 24, 1490 (2013). https://doi.org/10.1007/s10854-012-0960-x

    Article  Google Scholar 

  12. H. Zhang, M. Xie, S. Zhang, Y. Xiang, Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors. J. Alloys Compd. 602, 199–203 (2014). https://doi.org/10.1016/j.jallcom.2014.03.014

    Article  Google Scholar 

  13. P.A. Fernandes, P.M.P. Salomé, A.F.D. Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J. Phys. D Appl. Phys. 43, 215403 (2010). https://doi.org/10.1088/0022-3727/43/21/215403

    Article  ADS  Google Scholar 

  14. R. Chierchia, F. Pigna, M. Valentini, C. Malerba, E. Salza, P. Mangiapane, T. Polichetti, A. Mittig, Cu2SnS3 based solar cell with 3% efficiency. Phys. Stat. Sol. C 13, 35–39 (2016). https://doi.org/10.1002/pssc.201510115

    Article  Google Scholar 

  15. S. Sato, H. Sumi, G. Shi, M. Sugiyama, Investigation of the sulfurization process of Cu2SnS3 thin films and estimation of band offsets of Cu2SnS3-related solar cell structure. Phys. Stat. Sol. C 12, 757–760 (2015). https://doi.org/10.1002/pssc.201400294

    Article  Google Scholar 

  16. N. Aihara, H. Araki, A. Takeuchi, K. Jimbo, H. Katagiri, Fabrication of Cu2SnS3 thin films by sulfurization of evaporated Cu-Sn precursors for solar cells. Phys. Stat. Sol. C 10, 1086–1092 (2013). https://doi.org/10.1002/pssc.201200866

    Article  Google Scholar 

  17. J. Koike, K. Chino, N. Aihara, H. Araki, R. Nakamura, K. Jimbo, H. Katagiri, Cu2SnS3 thin-film solar cells from electroplated precursors. Jpn. J. Appl. Phys. 51, 10NC34 (2012). https://doi.org/10.1143/JJAP.51.10NC34

    Article  Google Scholar 

  18. N. Aihara, K. Tanaka, H. Uchiki, A. Kanai, H. Araki, Donor-acceptor pair recombination luminescence from monoclinic Cu2SnS3 thin film. Appl. Phys. Lett. 107, 032101 (2015). https://doi.org/10.1063/1.4927203

    Article  ADS  Google Scholar 

  19. Y. Matsumoto, N. Aihara, A. Munemura, K. Tanaka, Preparation of monoclinic Cu2SnS3 single crystal by chemical vapor transport with iodine. Mater. Lett. 170, 213–216 (2016). https://doi.org/10.1016/j.matlet.2016.02.039

    Article  Google Scholar 

  20. N. Aihara, Y. Matsumoto, K. Tanaka, Exciton luminescence from Cu2SnS3 bulk crystals. Appl. Phys. Lett. 108, 092107 (2016). https://doi.org/10.1063/1.4943229

    Article  ADS  Google Scholar 

  21. K. Tanaka, T. Maeda, H. Araki, Photoluminescence observation of the effects of Cu/Sn ratio and Na addition on Cu2SnS3. Sol. Energy 199, 143–151 (2020). https://doi.org/10.1016/j.solener.2020.02.014

    Article  ADS  Google Scholar 

  22. D. Motai, M. Kobayashi, R. Ohashi, K. Watanabe, Y. Hosokawa, K. Jimbo, Y. Akaki, H. Araki, Sulfurization temperature dependence of Na-added Cu2SnS3 thin films prepared on an alkali-free substrate. J. Ternary Multinary Compd. (2020). https://doi.org/10.57386/tmc.2020.0_44

  23. D.M. Berg, R. Djemour, L. Gütay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, A. Pérez-Rodriguez, Raman analysis of monoclinic Cu2SnS3 thin films. Appl. Phys. Lett. 100, 192103 (2012). https://doi.org/10.1063/1.4712623

    Article  ADS  Google Scholar 

  24. Y. Dong, X. Lu, P. Shen, Y. Chen, F. Yue, P. Xiang, L. Sun, P. Yang, J. Chu, Strategic improvement of Cu2SnS3 thin film by different heating rates and photoluminescence investigation. Mater. Sci. Semicond. Proc. 84, 124–130 (2018). https://doi.org/10.1016/j.mssp.2018.05.012

    Article  Google Scholar 

  25. T. Schmidt, K. Lischka, W. Zulehner, Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 8989–8994 (1992). https://doi.org/10.1103/PhysRevB.45.8989

    Article  ADS  Google Scholar 

  26. J.P. Teixeira, R.A. Sousa, M.G. Sousa, A.F. da Cunha, P.A. Fernandes, P.M.P. Salome, J.C. Gonzalez, J.P. Leitao, Comparison of fluctuating potentials and donor-acceptor pair transitions in a Cu-poor Cu2ZnSnS4 based solar cell. Appl. Phys. Lett. 105, 63901 (2014). https://doi.org/10.1063/1.4899057

    Article  Google Scholar 

  27. I. Dirnstorfer, M. Wagner, D.M. Hofmann, M.D. Lampert, F. Karg, B.K. Meyer, Characterization of CuIn(Ga)Se2 thin films. Phys. Stat. Sol. A 168, 163–175 (1998). https://doi.org/10.1002/(SICI)1521-396X(199807)168:1%3C163::AID-PSSA163%3E3.0.CO;2-T

    Article  ADS  Google Scholar 

  28. K. Tanaka, R, Mori, Photoluminescence properties and defects in CuBr1-xIx thin films and their dependence on halogen ratio. J. Sol. State. Chem. 293, 121786 (2021). https://doi.org/10.1016/j.jssc.2020.121786

    Article  Google Scholar 

  29. N. Aihara, Y. Matsumoto, K. Tanaka, Photoluminescence characterization of Cu2GeS3 bulk crystals. Phys. Stat. Sol. B 254, 1700118 (2017). https://doi.org/10.1002/pssb.201700118

    Article  ADS  Google Scholar 

  30. A. Crovetto, R. Chen, R.B. Ettlinger, A.C. Cazzaniga, J. Schou, C. Persson, O. Hansen, Dielectric function and double absorption onset of monoclinicCu2SnS3: origin of experimental features explained by first-principles calculations. Sol. Energy Mater. Sol. Cells 154, 121–129 (2016). https://doi.org/10.1016/j.solmat.2016.04.028

    Article  Google Scholar 

  31. A. Kanai, M. Sugiyama, Emission properties of intrinsic and extrinsic defects in Cu2SnS3 thin films and solar cells. Jpn. J. Appl. Phys. 60, 015504 (2021). https://doi.org/10.35848/1347-4065/abcf06

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI [JP19H02663] and [JP20H02680]. Mr. K. Watanabe supported the sulfurization process of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K., Miyagi, S., Motai, D. et al. Dependence of photoluminescence on sulfurization temperature of Cu2SnS3 thin films. Appl. Phys. A 129, 360 (2023). https://doi.org/10.1007/s00339-023-06641-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06641-x

Keywords

Navigation