Skip to main content
Log in

Effects of substrate material on the electrical properties of self-assembled InAs quantum dots-based laser structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the effects of the substrate material on the electrical properties of self-assembled InAs quantum dots (QDs)-based laser structures have been reported. Two InAs QD laser structures with the same active regions deposited on GaAs and Si substrates utilizing strain reducing layer (SRL) containing GaAs/InGaAs have been investigated using current–voltage (IV), capacitance–voltage, and Deep-Level Transient Spectroscopy (DLTS) techniques. The IV measurements illustrated that the rectification ratio (IF/IR) and built-in potential (ϕB) for the sample deposited on Si substrate are higher than that of sample deposited on GaAs substrate. However, the series resistance (Rs) of the InAs QDs deposited on Si substrate is lower than that of the InAs QDs deposited on GaAs substrate. The DLTS and Laplace-DLTS measurements showed that the number of traps in InAs QDs/GaAs devices is lower than that in InAs QDs/Si devices, corroborating with IV results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. J. Wu, S. Chen, A. Seeds, H. Liu, J. Phys. D. Appl. Phys. 48, 363001 (2015)

    Article  Google Scholar 

  2. D. Bimberg, J. Phys. D. Appl. Phys. 38, 2055 (2005)

    Article  ADS  Google Scholar 

  3. D.L. Huffaker, G. Park, Z. Zou, O.B. Shchekin, D.G. Deppe, Appl. Phys. Lett. 73, 2564 (1998)

    Article  ADS  Google Scholar 

  4. J.C. Norman, R.P. Mirin, J.E. Bowers, J. Vac. Sci. Technol. A 39, 020802 (2021)

    Article  Google Scholar 

  5. S. Mokkapati, M. Buda, H.H. Tan, C. Jagadish, Appl. Phys. Lett. 88, 1 (2006)

    Article  Google Scholar 

  6. A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, D. Bimberg, in MBE 2002 - 2002 12th Int. Conf. Mol. Beam Ep., pp 237–238 (2002)

  7. Q. Cao, S.F. Yoon, C.Y. Liu, C.Y. Ngo, Nanoscale Res. Lett. 2, 303 (2007)

    Article  ADS  Google Scholar 

  8. M. Benyoucef, A. Rastelli, O.G. Schmidt, S.M. Ulrich, P. Michler, Nanoscale Res. Lett. 1, 172 (2006)

    Article  ADS  Google Scholar 

  9. O.B. Shchekin, D.G. Deppe, IEEE Photonics Technol. Lett. 14, 1231 (2002)

    Article  ADS  Google Scholar 

  10. K. Li, M. Tang, M. Liao, J. Wu, S. Chen, A. Seeds, H. Liu, Tech. Dig. - Int. Electron Devices Meet. IEDM 2018-Decem, 23.5.1 (2019).

  11. S.S. Mikhrin, A.R. Kovsh, I.L. Krestnikov, A.V. Kozhukhov, D.A. Livshits, N.N. Ledentsov, Y.M. Shernyakov, I.I. Novikov, M.V. Maximov, V.M. Ustinov, Z.I. Alferov, Semicond. Sci. Technol. 20, 340 (2005)

    Article  ADS  Google Scholar 

  12. N. Al-Saqri, J.F. Felix, M. Aziz, D. Jameel, C.I.L. De Araujo, H. Albalawi, F. Al-Mashary, H. Alghamdi, D. Taylor, M. Henini, Curr. Appl. Phys. 15, 1230 (2015)

    Article  ADS  Google Scholar 

  13. C.Y. Liu, M. Stubenrauch, D. Bimberg, Nanotechnology 22, 235202 (2011)

    Article  ADS  Google Scholar 

  14. D. Mowbray, Laser Focus World 41, 157 (2005)

    Google Scholar 

  15. D. Bimberg, Electron. Lett. 44, 168 (2008)

    Article  ADS  Google Scholar 

  16. A.Y. Liu, S. Srinivasan, J. Norman, A.C. Gossard, J.E. Bowers, Photonics Res. 3, 1 (2015)

    Article  Google Scholar 

  17. A. Lee, Q. Jiang, M. Tang, A. Seeds, H. Liu, Opt. Express 20, 22181 (2012)

    Article  ADS  Google Scholar 

  18. Z. Mi, J. Yang, P. Bhattacharya, G. Qin, Z. Ma, Proc. IEEE 97, 1239 (2009)

    Article  Google Scholar 

  19. M. Al-Huwayz, H.V.A. Galeti, O.M. Lemine, K.H. Ibnaouf, A. Alkaoud, Y. Alaskar, A. Salhi, S. Alhassan, S. Alotaibi, A. Almalki, A. Almunyif, A. Alhassni, D.A. Jameel, Y.G. Gobato, M. Henini, J. Lumin. 251, 119155 (2022)

    Article  Google Scholar 

  20. A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, J. Alloys Compd. 771, 382 (2019)

    Article  Google Scholar 

  21. D.A. Jameel, M. Aziz, J.F. Felix, N. Al-Saqri, D. Taylor, H. Albalawi, H. Alghamdi, F. Al-Mashary, M. Henini, Appl. Surf. Sci. 387, 228 (2016)

    Article  ADS  Google Scholar 

  22. S.F. Chung, T.C. Wen, A. Gopalan, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 116, 125 (2005)

    Article  Google Scholar 

  23. J.H. Werner, Appl. Phys. A Solids Surf. 47, 291 (1988)

    Article  ADS  Google Scholar 

  24. C. Van Nguyen, K. Potje-Kamloth, Thin Solid Films 392, 113 (2001)

    Article  ADS  Google Scholar 

  25. S.K. Tripathi, M. Sharma, J. Appl. Phys. 111, 074513 (2012)

    Article  ADS  Google Scholar 

  26. S. Chand, Semicond. Sci. Technol. 19, 82 (2004)

    Article  ADS  Google Scholar 

  27. A. Tataroǧlu, Ş Altindal, F.Z. Pür, T. Ataseven, Ş Sezgin, Optoelectron. Adv. Mater. Rapid Commun. 5, 438 (2011)

    Google Scholar 

  28. J.S. Kim, E.K. Kim, J.O. Kim, S.J. Lee, S.K. Noh, Superlattices Microstruct. 46, 312 (2009)

    Article  ADS  Google Scholar 

  29. D.V. Lang, J. Appl. Phys. 45, 3023 (1974)

    Article  ADS  Google Scholar 

  30. L. Dobaczewski, A.R. Peaker, K. Bonde-Nielsen, J. Appl. Phys. 96, 4689 (2004)

    Article  ADS  Google Scholar 

  31. S. I. Sato, K. J. Schmieder, S. M. Hubbard, D. V. Forbes, J. H. Warner, T. Ohshima, R. J. Walters, 2015 IEEE 42nd Photovolt. Spec. Conf. PVSC 1 (2015)

  32. J. Lagowski, M. Kaminska, J.M. Parsey, H.C. Gatos, M. Lichtensteiger, Appl. Phys. Lett. 41, 1078 (1982)

    Article  ADS  Google Scholar 

  33. K. Yokota, H. Kuchii, K. Nakamura, M. Sakaguchi, H. Takano, Y. Ando, J. Appl. Phys. 88, 5017 (2000)

    Article  ADS  Google Scholar 

  34. R. Yakimova, T. Paskova, C. Hardalov, J. Appl. Phys. 74, 6170 (1993)

    Article  ADS  Google Scholar 

  35. G.M. Martin, A. Mitonneau, A. Mircea, Electron. Lett. 13, 191 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M. Al Huwayz would like to acknowledge the support of “the National Plan for Sciences, Technology and Innovation (MAARIFAH)-King Abdulaziz City for Sciences and Technology (KACST)-Kingdom of Saudi Arabia Award Number: 14-NAN65-08. N. Al Saqri and Y. Al Saleh are thankful for the financial support by Sultan Qaboos University internal grant project IG/SCI/PHYS/20/01.

Author information

Authors and Affiliations

Authors

Contributions

MAH: experimental design, carrying out measurements, and manuscript composition. DAJ, SA, SA, AA, NAS, YAlS, AA, and AA: manuscript composition. OML: manuscript composition. AS: MBE growth of samples and manuscript composition. MH: experimental design and manuscript composition.

Corresponding author

Correspondence to D. A. Jameel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Huwayz, M., Jameel, D.A., Alotaibi, S. et al. Effects of substrate material on the electrical properties of self-assembled InAs quantum dots-based laser structures. Appl. Phys. A 129, 405 (2023). https://doi.org/10.1007/s00339-023-06626-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06626-w

Keywords

Navigation