Skip to main content
Log in

Antibacterial effect and photothermal sterilization of low dose two-dimensional vanadium carbide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bacterial infections and the emergence of drug-resistant bacteria threaten human health. Photothermal sterilization has the advantages of temporal and spatial control, no drug resistance, and high efficiency and speed. Photothermal therapy (PTT) causes cell death by means of heat generation. In this work, V2CTx nanosheets are successfully prepared by an improved etching method and the biocompatibility is verified by cytotoxicity. The experiments show that the photothermal properties of V2CTx materials have a significant positive correlation with laser power and material concentration. Only 20 μg/mL of V2CTx can be heated above 70 °C in just 5 min. Photothermal conversion efficiency of V2CTx reaches 45.15% and has good photothermal stability. Taking the typical Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) as experimental bacteria. The results prove that V2CTx itself is a good antibacterial agent, but antibacterial need more than 4 h of culture time. Instead, the photothermal sterilization method shows only 0.125% and 12.72% survival rates for S. aureus and E. coli within 8 min, respectively. Therefore, the prepare V2CTx in this paper only needs 20 μg/mL to achieve efficient photothermal sterilization, which provides a good prospect for clinical treatment of diseases caused by multidrug-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M. Gheorghiade, G. Filippatos, L. De Luca, J. Burnett, Am. J. Med 119(12), S3–S10 (2006)

    Google Scholar 

  2. WHO, Bull. World Health Organ. (2016)

  3. R.E. Duval, M. Grare, B. Demoré, Molecules 24(17), 3152 (2019)

    Google Scholar 

  4. L. Wang, C. Hu, L. Shao, Int. J. Nanomed 12, 1227 (2017)

    Google Scholar 

  5. R. Sugden, R. Kelly, S. Davies, Nat. Microbiol. 1(10), 1–2 (2016)

    Google Scholar 

  6. E. Medina, D.H.J.H.t.o.t.a.c.f. Pieper, challenges, technologies, f. perspectives, (2016) 3–33.

  7. N. Rabiee, S. Ahmadi, O. Akhavan, R. Luque, Materials 15(5), 1799 (2022)

    ADS  Google Scholar 

  8. O. Akhavan, E.J.C.A.P. Ghaderi, J. Curr. Appl. Phys. 9(6), 1381–1385 (2009)

    ADS  Google Scholar 

  9. O. Akhavan, E. Ghaderi, Surf. Coat. Technol. 205(1), 219–223 (2010)

    Google Scholar 

  10. F. Cheng, J.W. Betts, S.M. Kelly, D.W. Wareham, A. Kornherr, F. Dumestre, J. Schaller, T. Heinze, J. Mater. Chem. B 2(20), 3057–3064 (2014)

    Google Scholar 

  11. B. Sohm, F. Immel, P. Bauda, C. Pagnout, Proteomics 15(1), 98–113 (2015)

    Google Scholar 

  12. O. Akhavan, E.J.T.J.O.P.C.C. Ghaderi, J. Phys. Chem. C 113(47), 20214–20220 (2009)

    Google Scholar 

  13. A. Monzavi, S. Eshraghi, R. Hashemian, F. Momen-Heravi, Clin. Oral Investig. 19, 349–356 (2015)

    Google Scholar 

  14. Z. Lin, Y. Luo, P. Liu, Y. Li, J. Yue, L. Jiang, Colloids Surf. B 204, 111831 (2021)

    Google Scholar 

  15. J. Li, G. Wang, H. Zhu, M. Zhang, X. Zheng, Z. Di, X. Liu, X. Wang, Sci. Rep. 4(1), 4359 (2014)

    ADS  Google Scholar 

  16. K. Krishnamoorthy, M. Veerapandian, L.-H. Zhang, K. Yun, S.J. Kim, J. Phys. Chem. C 116(32), 17280–17287 (2012)

    Google Scholar 

  17. O. Akhavan, E.J.A.N. Ghaderi, ACS Nano 4(10), 5731–5736 (2010)

    Google Scholar 

  18. W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, ACS Nano 4(7), 4317–4323 (2010)

    Google Scholar 

  19. T. Pulingam, K.L. Thong, M.E. Ali, J.N. Appaturi, I.J. Dinshaw, Z.Y. Ong, B.F. Leo, Colloids Surf. B: Biointerfaces 181, 6–15 (2019)

    Google Scholar 

  20. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23(37), 4248–4253 (2011)

    Google Scholar 

  21. B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2(2), 1–17 (2017)

    Google Scholar 

  22. M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Adv. Funct. Mater. 23(17), 2185–2192 (2013)

    Google Scholar 

  23. C. Lu, A. Li, T. Zhai, C. Niu, H. Duan, L. Guo, W. Zhou, Energy Stor. Mater. 26, 472–482 (2020)

    Google Scholar 

  24. K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, K.A. Mahmoud, ACS Nano 10(3), 3674–3684 (2016)

    Google Scholar 

  25. D. Li, A. Bao, X. Chen, S. Li, T. Wang, L. Zhang, J. Ji, Q. Li, C. Wang, Y. Gao, Adv. Ther. 3(10), 2000091 (2020)

    Google Scholar 

  26. J. Idiago-López, E. Moreno-Antolín, M. Jesús, R.M. Fratila, Nanoscale Adv. 3(5), 1261–1292 (2021)

    ADS  Google Scholar 

  27. Y. Zhong, X. Li, J. Chen, X. Wang, L. Wei, L. Fang, A. Kumar, S. Zhuang, J. Liu, Dalton Trans. 49(32), 11045–11058 (2020)

    Google Scholar 

  28. F. Kang, J. He, T. Sun, Z.Y. Bao, F. Wang, D.Y. Lei, Adv. Funct. Mater. 27(36), 1701842 (2017)

    Google Scholar 

  29. M.-H. Chan, S.-P. Chen, C.-W. Chen, Y.-C. Chan, R.J. Lin, D.P. Tsai, M. Hsiao, R.-J. Chung, X. Chen, R.-S. Liu, J. Phys. Chem. C 122(4), 2402–2412 (2018)

    Google Scholar 

  30. P. Agostinis, K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti, S.O. Gollnick, S.M. Hahn, M.R. Hamblin, A. Juzeniene, D. Kessel, CA Cancer J. Clin 61(4), 250–281 (2011)

    Google Scholar 

  31. N. Kotagiri, G.P. Sudlow, W.J. Akers, S. Achilefu, Nat. Nanotechnol. 10(4), 370–379 (2015)

    ADS  Google Scholar 

  32. R. Li, L. Zhang, L. Shi, P. Wang, ACS Nano 11(4), 3752–3759 (2017)

    Google Scholar 

  33. S. Zada, H. Lu, F. Yang, Y. Zhang, Y. Cheng, S. Tang, W. Wei, Y. Qiao, P. Fu, H. Dong, A.C.S. Appl, Bio Mater. 4(5), 4215–4223 (2021)

    Google Scholar 

  34. M. Wu, Y. An, R. Yang, Z. Tao, Q. Xia, Q. Hu, M. Li, K. Chen, Z. Zhang, Q. Huang, A.C.S. Appl, Nano Mater. 4(6), 6257–6268 (2021)

    Google Scholar 

  35. X. Yu, X. Cai, H. Cui, S.-W. Lee, X.-F. Yu, B. Liu, Nanoscale 9(45), 17859–17864 (2017)

    Google Scholar 

  36. E. Lee, A. VahidMohammadi, Y.S. Yoon, M. Beidaghi, D.-J. Kim, ACS Sens. 4(6), 1603–1611 (2019)

    Google Scholar 

  37. E. Ghasali, Y. Orooji, A. Azarniya, M. Alizadeh, M. Kazem-zad, Appl. Surf. Sci. 542, 148538 (2021)

    Google Scholar 

  38. A. Champagne, L. Shi, T. Ouisse, B. Hackens, J.-C.J.P.R.B. Charlier, J. Phys. Rev. B 97(11), 115439 (2018)

    ADS  Google Scholar 

  39. M. Wu, B. Wang, Q. Hu, L. Wang, A. Zhou, Materials 11(11), 2112 (2018)

    ADS  Google Scholar 

  40. H. Yuan, C.G. Khoury, C.M. Wilson, G.A. Grant, A.J. Bennett, T. Vo-Dinh, Nanomedicine 8(8), 1355–1363 (2012)

    Google Scholar 

  41. C. Dai, Y. Chen, X. Jing, L. Xiang, D. Yang, H. Lin, Z. Liu, X. Han, R. Wu, ACS Nano 11(12), 12696–12712 (2017)

    Google Scholar 

  42. H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu, F. Tang, Angew. Chem. 123(4), 921–925 (2011)

    ADS  Google Scholar 

  43. R. Fan, Y. Yang, J. Xue, F. Zhang, J. Sun, H. Xu, T. Jiang, ChemNanoMat 6(1), 148–153 (2020)

    Google Scholar 

  44. A.R. Deokar, L.-Y. Lin, C.-C. Chang, Y.-C. Ling, J. Mater. Chem. B 1(20), 2639–2646 (2013)

    Google Scholar 

  45. A.H. Delcour, Biochim. Biophys. Acta Bioenerg. 1794(5), 808–816 (2009)

    Google Scholar 

  46. W. Yin, J. Yu, F. Lv, L. Yan, L.R. Zheng, Z. Gu, Y. Zhao, ACS Nano 10(12), 11000–11011 (2016)

    Google Scholar 

  47. L. Tan, J. Li, X. Liu, Z. Cui, X. Yang, S. Zhu, Z. Li, X. Yuan, Y. Zheng, K.W. Yeung, Adv. Mater. 30(31), 1801808 (2018)

    Google Scholar 

  48. X. Wang, M. Yao, L. Ma, P. Yu, T. Lu, L. Zhang, X. Yuan, Y. Zhang, J. Ye, Adv. Healthc. Mater. 10(14), 2100392 (2021)

    Google Scholar 

  49. H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, J. Am. Chem. Soc. 139(45), 16235–16247 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Zhejiang Province under grant no. LZ22F050004, National Natural Science Foundation of China under Grant nos. 51972292 and 52271139.

Author information

Authors and Affiliations

Authors

Contributions

WZ conceptualization, methodology, validation, investigation, data management, formal analysis, writing—original manuscript. JL conceptualization, writing—review and edit. HY methodology. ZY investigation. ZY methodology. ZY methodology, writing—review and edit.

Corresponding authors

Correspondence to Li Jiang or Yan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Jiang, L., Yang, H. et al. Antibacterial effect and photothermal sterilization of low dose two-dimensional vanadium carbide. Appl. Phys. A 129, 308 (2023). https://doi.org/10.1007/s00339-023-06602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06602-4

Keywords

Navigation