Skip to main content
Log in

Improving electrophoretic deposition of (Mg/Al)-doped Ni(OH)2 through the generation of layered double hydroxides

  • Rapid Communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we report the synthesis of (Mg/Al)-doped Ni(OH)2 by a microwave-assisted co-precipitation route and its subsequent electrophoretic deposition (EPD) on ITO-coated glasses under an applied voltage of 12 V for 15 min. The X-ray diffraction (XRD) patterns of the powder samples with different Al3+ content show the presence of β-Ni(OH)2 and a layered double hydroxide (LDH) structure with characteristic peaks for the (006) and (009) diffraction planes. The analysis carried out by scanning electron microscopy (SEM) confirmed the lamellar morphology of the samples. Methanol, ethanol, and isopropanol were evaluated as dispersing media for the EPD of the doped nickel hydroxide. Based on zeta potential measurements, isopropanol was selected as the dispersion medium for EPD. XRD analysis of the as-prepared coatings indicates that the EPD of the LDH structure is preferred over the β-Ni(OH)2 phase. Moreover, the LDH increased the surface coverage due to the incorporation of Al3+ ions into the Ni(OH)2 structure. These results generate interesting expectations for the preparation of doped-metal oxide films from hydroxide precursors using EPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Data Availability

Data will be made available on request.

References

  1. P. Tiwary, N. Chakrabarty, H.J. Edwards, V.R. Dhanak, A. Kar, R. Mahapatra, A.K. Chakraborty, Appl. Surf. Sci. 570, 151090 (2021). https://doi.org/10.1016/j.apsusc.2021.151090

    Article  Google Scholar 

  2. T.N. Ramesh, P.V. Kamath, J. Power Sources 156, 655–661 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.050

    Article  ADS  Google Scholar 

  3. K. Yan, M. Sheng, X. Sun, C. Song, Z. Cao, Y. Sun, ACS Appl. Energy Mater. 2, 1961–1968 (2019). https://doi.org/10.1021/acsaem.8b02067

    Article  Google Scholar 

  4. P. Rana, P. Jeevanandam, J. Clust. Sci. (2022). https://doi.org/10.1007/s10876-022-02237-2

    Article  Google Scholar 

  5. M. Li, Z.P. Xu, Y. Sultanbawa, W. Chen, J. Liu, G. Qian, Colloids Surf. B Biointerfaces 181, 585–592 (2019). https://doi.org/10.1016/j.colsurfb.2019.06.013

    Article  Google Scholar 

  6. M.P. Nikiforov, M.V. Chernysheva, A.A. Eliseev, A.V. Lukashin, Y.D. Tretyakov, Y.V. Maksimov, I.P. Suzdalev, P. Goernert, Mater. Sci. Eng. B 109, 226–231 (2004). https://doi.org/10.1016/j.mseb.2003.10.071

    Article  Google Scholar 

  7. G. Gao, G. Yang, M. Dou, S. Kang, X. Yin, H. Yang, W. Yang, D. Li, J. Dou. Int. J. Hydrog. Energy 48, 2200–2210 (2023). https://doi.org/10.1016/j.ijhydene.2022.10.099

    Article  Google Scholar 

  8. K. Nava-Andrade, G.G. Carbajal-Arizaga, S. Obregón, V. Rodríguez-González, J. Environ. Manag. 288, 112399 (2021). https://doi.org/10.1016/j.jenvman.2021.112399

    Article  Google Scholar 

  9. R. Li, Y. Li, X. Jia, J. Yang, X. Miao, D. Shao, L. Feng, S. Wang, J. Wu, H. Song, Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.01.054. (in press)

    Article  Google Scholar 

  10. Z. Ge, C. Wang, T. Chen, Z. Chen, T. Wang, L. Guo, G. Qi, J. Liu, J. Phys. Chem. Solids 150, 109833 (2021). https://doi.org/10.1016/j.jpcs.2020.109833

    Article  Google Scholar 

  11. A. Elhalil, R. Elmoubarki, M. Farnane, A. Machrouhi, M. Sadiq, F.Z. Mahjoubi, S. Qourzal, N. Barka, Environ. Nanotechnol. Monit. Manag. 10, 63–72 (2018). https://doi.org/10.1016/j.enmm.2018.02.002

    Article  Google Scholar 

  12. A.A.A. Ahmed, E.A.A. Alahsab, A.M. Abdulwahab, Results Phys. 22, 103938 (2021). https://doi.org/10.1016/j.rinp.2021.103938

    Article  Google Scholar 

  13. C. Wang, G. Dong, Y. Zhao, Y. He, Y. Ding, X. Du, X. Zhong, M. Wang, X. Diao, J. Alloys Compd. 821, 153365 (2020). https://doi.org/10.1016/j.jallcom.2019.153365

    Article  Google Scholar 

  14. J. Shi, L. Lai, P. Zhang, H. Li, Y. Qin, Y. Gao, L. Luo, J. Lu, J. Solid State Chem. 241, 1–8 (2016). https://doi.org/10.1016/j.jssc.2016.05.032

    Article  ADS  Google Scholar 

  15. G. Fan, F. Li, D.G. Evans, X. Duan, Chem. Soc. Rev. 43, 7040–7066 (2014). https://doi.org/10.1039/C4CS00160E

    Article  Google Scholar 

  16. G. Zhang, X. Zhang, Y. Meng, G. Pan, Z. Ni, S. Xia, Chem. Eng. J. 392, 123684 (2020). https://doi.org/10.1016/j.cej.2019.123684

    Article  Google Scholar 

  17. X. Li, D. Du, Y. Zhang, W. Xing, Q. Xue, Z. Yan, J. Mater. Chem. A 5, 15460–15485 (2017). https://doi.org/10.1039/C7TA04001F

    Article  Google Scholar 

  18. H. Zhang, Y. Du, Q. Yang, X. Zhou, ACS Appl. Nano Mater. 4, 11753–11762 (2021). https://doi.org/10.1021/acsanm.1c02336

    Article  Google Scholar 

  19. Z. Zhang, C.J.R. Wells, R. Liang, G.L. Davies, G.R. Williams, J. Clust. Sci. (2022). https://doi.org/10.1007/s10876-022-02226-5

    Article  Google Scholar 

  20. X. Dai, W. Yi, C. Yin, K. Li, L. Feng, Q. Zhou, Z. Yi, X. Zhang, Y. Wang, Y. Yu, X. Han, Y. Zhang, Appl. Clay Sci. 229, 106664 (2022). https://doi.org/10.1016/j.clay.2022.106664

    Article  Google Scholar 

  21. L. Liao, N. Zhao, Z. Xia, Mater. Res. Bull. 47, 3897–3901 (2012). https://doi.org/10.1016/j.materresbull.2012.07.007

    Article  Google Scholar 

  22. Z. Jiag, J. Wu, X. Liu, H. Yu, C. Jiao, J. Shen, Y. Pei, New J. Chem. 45, 14580–14588 (2021). https://doi.org/10.1039/D1NJ02035H

    Article  Google Scholar 

  23. A.I. Navarro-Aguilar, M.A. Ruíz-Gómez, V. Rodríguez-González, S. Obregón, A. Vázquez, Ceram. Int. 46, 28528–28535 (2020). https://doi.org/10.1016/j.ceramint.2020.08.010

    Article  Google Scholar 

  24. X. Long, Z. Wang, S. Xiao, Y. An, S. Yang, Mater. Today 19, 213–226 (2016). https://doi.org/10.1016/j.mattod.2015.10.006

    Article  Google Scholar 

Download references

Acknowledgements

A. Zárate-Aguillón appreciates the scholarship from CONACYT. S. Obregón thanks CONACYT for the project approved by the sectorial research fund for education CB 2017-2018 No. A1-S-9529. A. Vazquez thanks UANL for the project PAICYT-2022 517-IT-2022. The authors would like to thank LANNBIO Cinvestav-Mérida for the use of their facilities.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology and Writing: AV and SO; Formal analysis and investigation: AZ-A and Angel Israel Navarro-Aguilar; Writing—review and editing: MAR-G.

Corresponding authors

Correspondence to Sergio Obregón or Alejandro Vázquez.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3577 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zárate-Aguillón, A., Navarro-Aguilar, A.I., Ruiz-Gómez, M.A. et al. Improving electrophoretic deposition of (Mg/Al)-doped Ni(OH)2 through the generation of layered double hydroxides. Appl. Phys. A 129, 305 (2023). https://doi.org/10.1007/s00339-023-06588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06588-z

Keywords

Navigation