Skip to main content
Log in

Enhancement of the electrical properties of Au/MgSe/Au microwave resonators via pulsed laser welding of MgSe and Au nanosheets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Herein, stacked nanosheets of Au (50 nm) and MgSe (100 nm) are fabricated by the thermal evaporation technique and welded by pulsed lasers of wavelengths of 1064 nm within few seconds. Au/MgSe (AMA) and welded Au/MgSe (PLW) interfaces are coated with another Au point contact and employed as microwave resonators. It is observed that both AMA and PLW devices are of amorphous structure. The laser welding technique resulted in formation clusters composed of very dense grains of Mg1.37AuSe1.18 and other clusters composed of Mg1.16Se. In addition, the impedance spectroscopy measurements on these nano-thick devices have shown their novel ability to perform as negative capacitance sources and as band-stop filters. The pulsed laser welding of these microwave resonators increased their ac conductivities by increasing the hopping sites in the devices. The density of localized states near the Fermi level is increased by ~ 21% and the scattering time constant between hopping sites is shortened via laser welding. As microwave resonators, the pulsed laser welding process shifted the notch frequency from 1.0 to 2.16 GHz, improved the negativity of the capacitance, increased the return loss values and lowered the voltage standing wave ratios to 1.0. The features of the AMA microwave resonators before and after the pulsed laser welding nominate them for use as band-stop filters and as negative capacitance sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. E.H. Penilla, L.F. Devia-Cruz, A.T. Wieg, P. Martinez-Torres, N. Cuando-Espitia, P. Sellappan, Y. Kodera, G. Aguilar, J.E. Garay, Science 365, 803–808 (2019). https://doi.org/10.1126/science.aaw6699

    Article  ADS  Google Scholar 

  2. H. Naffakh-Moosavy, A. Rasouli, J. Weld. Sci. Technol. Iran 7, 89–101 (2022). http://jwsti.iut.ac.ir/article-1-386-en.html

  3. N.M. Alkhamisi, H.K. Khanfar, A.F. Qasrawi, Physica B: Condens. Matter 649, 414512 (2023). https://doi.org/10.1016/j.physb.2022.414512

    Article  Google Scholar 

  4. S.H. Um, S.W. Hwang, C.P. Grigoropoulos, H. Jeon, S.H. Ko, Appl. Phys. Rev. 9, 041302 (2022). https://doi.org/10.1063/5.0101634

    Article  ADS  Google Scholar 

  5. N. Wang, S.I. Rokhlin, D.F. Farson, J. Nanopart. Res. 13, 4491–4509 (2011). https://doi.org/10.1007/s11051-011-0402-3

    Article  ADS  Google Scholar 

  6. R.A. Almotiri, A.F. Qasrawi, S.E. Al Garni, J. Electron. Mater. 52, 394–401 (2023). https://doi.org/10.1007/s11664-022-09999-5

    Article  ADS  Google Scholar 

  7. R.A. Almotiri, A.F. Qasrawi, S.E. Algarni, Phys. Scr. 97, 125811 (2022). https://doi.org/10.1088/1402-4896/ac9be8

    Article  ADS  Google Scholar 

  8. S.E. Algarni, A.F. Qasrawi, N.M. Khusayfan, Cryst. Res. Technol. (2022). https://doi.org/10.1002/crat.202200185

    Article  Google Scholar 

  9. M.P. Wells, R. Bower, R. Kilmurray, B. Zou, A.P. Mihai, G. Gobalakrichenane, NMc.N. Alford, R.F.M. Oulton, L.F. Cohen, S.A. Maier, A.V. Zayats, P.K. Petrov, Opt. Express 26, 15726–15744 (2018). https://doi.org/10.1364/OE.26.015726

    Article  ADS  Google Scholar 

  10. M.M. Alkhamisi, H.K. Khanfar, A.F. Qasrawi, S.E. Algarni, Appl. Phys. A 128, 1–10 (2022). https://doi.org/10.1007/s00339-022-06174-9

    Article  Google Scholar 

  11. Z. Lu, Y. Wang, X. Ruan, J. Appl. Phys. 123, 074302 (2018). https://doi.org/10.1063/1.5014987

    Article  ADS  Google Scholar 

  12. R. Muthaiah, J. Garg (2021), Preprint at arXiv:2101.12647. https://doi.org/10.48550/arXiv.2101.12647

  13. M.V. Sukhanov, A.D. Plekhovich, T.V. Kotereva, A.M. Gibin, A.M. Potapov, A.M. Kut’in, M.F. Dokl, Chemistry 466, 11–14 (2016). https://doi.org/10.1134/S0012500816010079

    Article  Google Scholar 

  14. Y. Meng, Y. Ma, S. Chen, Y. Han, S. Chen, J. Huang, J. Yang, J. Mater. Process. Technol. 291, 117038 (2021). https://doi.org/10.1016/j.jmatprotec.2020.117038

    Article  Google Scholar 

  15. G.M. Kim, A. Wutzler, H.J. Radusch, G.H. Michler, P. Simon, R.A. Sperling, W.J. Parak, Chem. Mater. 17, 4949–4957 (2005). https://doi.org/10.1021/cm0508120

    Article  Google Scholar 

  16. D. Chen, M. Luo, S. Ning, J. Lan, W. Peng, Y.R. Lu, T.S. Chan, Y. Tan, Small 18, 2104043 (2022). https://doi.org/10.1002/smll.202104043

    Article  Google Scholar 

  17. Y. Uetake, S. Mouri, S. Haesuwannakij, K. Okumura, H. Sakurai, Nanoscale Adv. 3, 1496–1501 (2021). https://doi.org/10.1039/D0NA00951B

    Article  ADS  Google Scholar 

  18. G. Sun, Y. Li, X. Zhao, Y. Mi, L. Wang, Am. J. Anal. Chem. 7, 34–42 (2016). https://doi.org/10.4236/ajac.2016.71004

    Article  Google Scholar 

  19. K. Yang, J. Xiao, Z. Ren, Z. Wei, J.W. Luo, S.H. Wei, H.X. Deng, J. Phys. Chem. Lett. 12, 7832–7839 (2021). https://doi.org/10.1021/acs.jpclett.1c01783

    Article  Google Scholar 

  20. J. Wang, J. Qiao, K. Xu, J. Chen, Y. Zhao, B. Qiu, Z. Lin, W. Ji, Y. Chai, Sci. Bull. 65, 1451–1459 (2020). https://doi.org/10.1016/j.scib.2020.05.008

    Article  Google Scholar 

  21. A.F. Qasrawi, H.M. Zyoud, Mater. Res. (2020). https://doi.org/10.1590/1980-5373-MR-2020-0064

    Article  Google Scholar 

  22. Z.N. Kayani, H. Nazli, S. Kousar, S. Riaz, S. Naseem, Ceram. Int. 46, 14605–14612 (2020). https://doi.org/10.1016/j.ceramint.2020.02.261

    Article  Google Scholar 

  23. A. Qasrawi, M. Taleb, Mater. Sci. Pol. 38, 174–180 (2020). https://doi.org/10.2478/msp-2020-0009

    Article  ADS  Google Scholar 

  24. A. Ghosh, Phys. Rev. B 41, 1479 (1990). https://doi.org/10.1103/PhysRevB.41.1479

    Article  ADS  Google Scholar 

  25. A.A.A. Darwish, M.M. El-Nahass, A.E. Bekheet, J. Alloys Compd. 586, 142–147 (2014). https://doi.org/10.1016/j.jallcom.2013.10.054

    Article  Google Scholar 

  26. C. Latouche, Y.R. Lin, Y. Tobon, E. Furet, J.Y. Saillard, C.W. Liu, A. Boucekkine, Phys. Chem. Chem. Phys. 16, 25840–25845 (2014). https://doi.org/10.1039/C4CP03990D

    Article  Google Scholar 

  27. L.F. Machogo, R.K. Sithole, N. Phao, T. Kolokoto, S.S. Gqoba, M. Mlambo, M.J. Moloto, P.M. Shumbula, P.S. Mdluli, N. Moloto, Mater. Sci. Eng. B 263, 114878 (2021). https://doi.org/10.1016/j.mseb.2020.114878

    Article  Google Scholar 

  28. G. Palyanova, T. Beliaeva, K. Kokh, Y. Seryotkin, T. Moroz, N. Tolstykh, J. Raman Spectrosc. 53, 1012–1022 (2022). https://doi.org/10.1002/jrs.6327

    Article  ADS  Google Scholar 

  29. Z. Zhao, T. Yu, P. Si, K. Zhang, W. Lyu, Inf. MIDEM 50, 169–178 (2020). https://doi.org/10.33180/InfMIDEM2020.302

    Article  Google Scholar 

  30. S. Shreya, N. Kumar, S. Anand, I. Amin, J. Electron. Mater. 49, 2349–2357 (2020). https://doi.org/10.1007/s11664-020-07969-3

    Article  ADS  Google Scholar 

  31. Z. C. J. Yuan, The Applicability of Ferroelectrics for Analog and Digital Transistor Applications. Doctoral dissertations, University of Alberta, 2022

  32. A.F. Qasrawi, Optik 265, 169529 (2022). https://doi.org/10.1016/j.ijleo.2022.169529

    Article  ADS  Google Scholar 

  33. N.M. Khusayfan, A.F. Qasrawi, H.K. Khanfar, Mater. Res. Express 5, 026303 (2018). https://doi.org/10.1088/2053-1591/aaadda

    Article  ADS  Google Scholar 

  34. H. Jin, J. Li, L. Wan, Y. Dai, Y. Wei, H. Guo, 2D Mater. 4, 025116 (2017). https://doi.org/10.1088/2053-1583/aa75eb

    Article  Google Scholar 

  35. D.M. Pozar, Microwave engineering (Wiley, New York, 2011)

    Google Scholar 

  36. A. Pant, M. Singh, M.S. Parihar, AEU-Int. J. Electron. Commun. 131, 153638 (2021). https://doi.org/10.1016/j.aeue.2021.153638

    Article  Google Scholar 

  37. L.H.K. Alfhaid, A.F. Qasrawi, Opt. Quant. Electron. 54, 1–11 (2022). https://doi.org/10.1007/s11082-022-03760-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Funding

This research work was funded by Institutional Fund Projects under grant no. IFPIP:331-665-1443. The authors gratefully acknowledge the technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Qasrawi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almotiri, R.A., Qasrawi, A.F. & Agha, B.S. Enhancement of the electrical properties of Au/MgSe/Au microwave resonators via pulsed laser welding of MgSe and Au nanosheets. Appl. Phys. A 129, 289 (2023). https://doi.org/10.1007/s00339-023-06583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06583-4

Keywords

Navigation