Skip to main content
Log in

Enhanced critical current density and pinning properties in KNbO3 nanoparticles added YBCO superconductor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, the effect of the addition of potassium niobate (KNbO3) nanoparticles (NPs) on the pinning properties of YBCO compound is investigated. The synthesis of YBCO:xKNbO3 (x = 0–1 wt%) nanocomposites were carried out using a two-step process, firstly KNbO3 NPs were synthesized via hydrothermal process, and later on, the nanocomposites were synthesized via solid-state reaction method containing various concentrations of NPs from 0 to 1 wt%. The effect of NPs of KNbO3 in YBCO is studied using structural, morphological, transport, and magnetic measurements. From XRD spectra, the crystal structure of YBCO was found to be orthorhombic, which remained invariant even in the nanocomposites. Magnetic properties of YBCO and its nanocomposites over the range of − 6 T to + 6 T were characterized using magnetic property measurement system (MPMS). The Bean model is applied to calculate the critical current density (JC), which has improved in YBCO:KNbOnanocomposites as compared to YBCO. The maximum enhancement of ~ 4.4 times in JC and pinning properties was found for YBCO:0.5wt%KNbO3 nanocomposites due to the creation of defects in YBCO matrix. Additionally, it is observed that for nanocomposites compared to YBCO, the rate of JC decay decreases with an increase of externally applied field, which indicates an enhancement in pinning properties of nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data generated or analysed during this study are included in this published article.

References

  1. D.K. Namburi, Y. Shi, D.A. Cardwell, Supercond. Sci. Technol. 34, 053002 (2021)

    ADS  Google Scholar 

  2. S.R. Foltyn, L. Civale, J.L. MacManus-Driscoll, Q.X. Jia, B. Maiorov, H. Wang, M. Maley, Nat. Mater. 6, 631–642 (2007)

    ADS  Google Scholar 

  3. J.W. Ekin, A.I. Braginski, A.J. Panson, M.A. Janocko, D.W. Capone, N.J. Zaluzec, B. Flandermeyer, O.F. de Lima, M. Hong, J. Kwo, J. Appl. Phys. 62, 4821–4828 (1987)

    ADS  Google Scholar 

  4. D. Dimos, P. Chaudhari, J. Mannhart, Phys. Rev. B. 41, 4038 (1990)

    ADS  Google Scholar 

  5. A. Harabor, P. Rotaru, N.A. Harabor, P. Nozar, A. Rotaru, Ceram. Int. 45, 2899–2907 (2019)

    Google Scholar 

  6. A.K. Jha, K. Matsumoto, T. Horide, S. Saini, P. Mele, A. Ichinose, Y. Yoshida, S. Awaji, J. Appl. Phys. 122, 093905 (2017)

    ADS  Google Scholar 

  7. T. Haugan, P.N. Barnes, R. Wheeler, F. Meisenkothen, M. Sumption, Nature 430, 867–870 (2004)

    ADS  Google Scholar 

  8. B.A. Malik, M.A. Malik, K. Asokan, Chin. J. Phys. 55, 170–175 (2017)

    Google Scholar 

  9. A.K. Jha, K. Matsumoto, Front. Phys. 7, 82 (2019)

    Google Scholar 

  10. Y. Slimani, M.A. Almessiere, E. Hannachi, A. Manikandan, R. Algarni, A. Baykal, F. ben Azzouz, J. Alloys. Compd. 810, 151884 (2019)

    Google Scholar 

  11. A.A. Abrikosov, Sov. Phys. JETP. 5, 1174–1182 (1957)

    Google Scholar 

  12. U. al Khawaja, M. Benkraouda, I.M. Obaidat, S. Alneaimi, Phys. C Supercond. Appl. 442, 1–8 (2006)

    ADS  Google Scholar 

  13. S. Dadras, S. Falahati, S. Dehghani, Phys. C Supercond. Appl. 548, 65–67 (2018)

    ADS  Google Scholar 

  14. F. ben Azzouz, M. Zouaoui, A. Mellekh, M. Annabi, G. van Tendeloo, M. ben Salem, Phys. C Supercond. Appl. 455, 19–24 (2007)

    ADS  Google Scholar 

  15. M.K. ben Salem, M.A. Almessiere, A.L. Al-Otaibi, M. ben Salem, F. ben Azzouz, J. Alloys. Compd. 657, 286–295 (2016)

    Google Scholar 

  16. A.C.A. Nur-Syazwani, R. Abd-Shukor, J. Supercond. Nov. Magn. 32, 863–868 (2019)

    Google Scholar 

  17. Y. Zhao, C.H. Cheng, J.S. Wang, Supercond. Sci. Technol. 18, S43 (2004)

    Google Scholar 

  18. X. Dong, S. Wang, Y. Zhou, H. Zhang, Y. Li, X. Ge, Q. Li, J. Electron. Spectros. Relat. Phenomena. 196, 66–70 (2014)

    Google Scholar 

  19. M. Sahoo, D. Behera, J. Phys. Chem. Solids. 74, 950–956 (2013)

    ADS  Google Scholar 

  20. E. Hannachi, Y. Slimani, A. Ekicibil, A. Manikandan, F. ben Azzouz, J. Mater. Sci. Mater. Electron. 30, 8805–8813 (2019)

    Google Scholar 

  21. B. Sahoo, S.R. Mohapatra, A.K. Singh, D. Samal, D. Behera, Ceram. Int. 45, 7709–7716 (2019)

    Google Scholar 

  22. Y. Slimani, M.A. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F. ben Azzouz, Ceram. Int. 45, 2621–2628 (2019)

    Google Scholar 

  23. E. Hannachi, A. Hamrita, Y. Slimani, M.K. ben Salem, M. Zouaoui, M. ben Salem, F. ben Azzouz, J. Supercond. Nov. Magn. 28, 493–498 (2015)

    Google Scholar 

  24. C.H. Cheng, Y. Zhao, Phys. C Supercond. Appl. 463, 174–177 (2007)

    ADS  Google Scholar 

  25. N.D. Kumar, T. Rajasekharan, V. Seshubai, Supercond. Sci. Technol. 24, 85005 (2011)

    Google Scholar 

  26. S. Dadras, Z. Gharehgazloo, Phys. B: Condens. Matter. 492, 45–49 (2016)

    ADS  Google Scholar 

  27. E. Hannachi, Y. Slimani, M.K. ben Salem, A. Hamrita, A.L. Al-Otaibi, M.A. Almessiere, M. ben Salem, F. ben Azzouz, Indian J. Phys. 90, 1009–1018 (2016)

    ADS  Google Scholar 

  28. A. Kujur, D. Behera, Phys. C Supercond. Appl. 483, 45–50 (2012)

    ADS  Google Scholar 

  29. N.M. Hapipi, S.K. Chen, A.H. Shaari, M.M.A. Kechik, K.B. Tan, K.P. Lim, J. Mater. Sci. Mater. Electron. 29, 18684–18692 (2018)

    Google Scholar 

  30. M. Dahiya, R. Kumar, D. Kumar, D. Kumar, N. Khare, J. Supercond. Nov. Magn. 34, 2249–2257 (2021)

    Google Scholar 

  31. D. Wang, G. Wang, Z. Lu, Z. Al-Jlaihawi, A. Feteira, Front. Mater. 7, 91 (2020)

    ADS  Google Scholar 

  32. D. Varshney, A. Yogi, N. Dodiya, I. Mansuri, J. Mod. Phys. 2, 922–927 (2011)

    Google Scholar 

  33. M. Dahiya, R. Kumar, D. Kumar, D. Kumar, N. Khare, J. Alloys. Compd. 883, 160840 (2021)

    Google Scholar 

  34. G. Xiao, F.H. Streitz, A. Gavrin, M.Z. Cieplak, J. Childress, M. Lu, A. Zwicker, C.L. Chien, Phys. Rev. B. 36, 2382 (1987)

    ADS  Google Scholar 

  35. Y. Slimani, E. Hannachi, A. Ekicibil, M.A. Almessiere, F. ben Azzouz, J. Alloys. Compd. 781, 664–673 (2019)

    Google Scholar 

  36. A. Mellekh, M. Zouaoui, F. ben Azzouz, M. Annabi, M. ben Salem, Solid State Commun. 140, 318–323 (2006)

    ADS  Google Scholar 

  37. R. Algarni, M.A. Almessiere, Y. Slimani, E. Hannachi, F. ben Azzouz, J. Alloys. Compd. 852, 157019 (2021)

    Google Scholar 

  38. Y. Slimani, M.A. Almessiere, E. Hannachi, M. Mumtaz, A. Manikandan, A. Baykal, F. ben Azzouz, Ceram. Int. 45, 6828–6835 (2019)

    Google Scholar 

  39. A.K. Jha, N. Khare, J. Magn. Magn. Mater. 322, 2653–2657 (2010)

    ADS  Google Scholar 

  40. A.K. Jha, N. Khare, Phys. C Supercond. Appl. 469, 810–813 (2009)

    ADS  Google Scholar 

  41. C.J. van der Beek, M. Konczykowski, A. Abal’oshev, I. Abal’osheva, P. Gierlowski, S.J. Lewandowski, M. Indenbom, S. Barbanera, Phys. Rev. B. 66, 245231 (2002)

  42. A.K. Jha, N. Khare, R. Pinto, Solid State Commun. 151, 1447–1451 (2011)

    ADS  Google Scholar 

  43. Y.L. Zuev, D.K. Christen, S.H. Wee, A. Goyal, S.W. Cook, Appl. Phys. Lett. 93, 172512 (2008)

    ADS  Google Scholar 

  44. B. Maiorov, S.A. Baily, H. Zhou, O. Ugurlu, J.A. Kennison, P.C. Dowden, T.G. Holesinger, S.R. Foltyn, L. Civale, Nat. Mater. 8, 398–404 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Nanoscale Research Facility (NRF) and the Central Research Facility (CRF) of IIT Delhi for the use of characterization facilities. One of the authors (Gaurav Kumar) is thankful to the Department of Science and Technology (DST) for providing INSPIRE Fellowship (IF190132).

Funding

Funding was provided by Ministry of Electronics and Information Technology (Grant number RP03530).

Author information

Authors and Affiliations

Authors

Contributions

GK conceptualization, methodology, data curation, formal analysis and investigation, and writing-original draft. MD formal analysis and validation. RK investigation and validation. DK investigation and validation. NK conceptualization, methodology, validation, supervision, and writing-reviewing and editing.

Corresponding author

Correspondence to Neeraj Khare.

Ethics declarations

Conflict of interest

The authors disclose no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Dahiya, M., Kumar, R. et al. Enhanced critical current density and pinning properties in KNbO3 nanoparticles added YBCO superconductor. Appl. Phys. A 129, 291 (2023). https://doi.org/10.1007/s00339-023-06572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06572-7

Keywords

Navigation