Skip to main content
Log in

Parametric crystalline characterization of Anatase/Rutile polymorphic ceramic

  • Invited Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The investigation of Anatase and Rutile structure is of great importance to certain the reliability of such polymorphs to operate during designated operations. In particular, Anatase is considered a metastable polymorph of Titania that has unique electrical properties and is often used in solar cells, electrical sensors/semiconductors and other photocatalytic applications. Anatase is prone to revert to Rutile under elevated temperature, exposing a debilitating performance at high thermal environment. The work here aims to investigate the structural changes of such polymorphs. The transition of material lattice from sub-atomic to macroscale is essential to understand the continuum behavior of a structure from the nanoscale. This is the very definition of a multiscale behavior, where a material response heavily depends on the atomic characteristics and environmental factors. These factors have high influence on the atomic structure in a spatial and temporal perspective, where atomistic simulation methods require high computational power in order to observe certain response features. Moreover, crystalline characterization methods in such approaches are highly limited to either simplified structures or largely complex factors. The introduced Predominant Common Neighborhood Parameter (PCNP) and Cumulative Common Neighborhood Parameter (CCNP) parameters are put to use in order to investigate the phase transition between two titania polymorphic phases (Rutile and Anatase). The work was done on a temperature range from 100 to 1300 K in a localized MD simulation in order to ascertain the phase transition mechanics. It is found that CCNP showed a better performance in obtaining such transition along the critical planes of the transformation phase. A subsequent nanoindentation simulation was conducted to obtain the mechanical property of the final structure using a new dynamic formulation of the Bridging Cell Method (BCM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be available upon request.

References

  1. D.A. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 46(4), 855–874 (2011)

    ADS  Google Scholar 

  2. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol., C 9(1), 1–12 (2008)

    Google Scholar 

  3. W. Fang, M. Xing, J. Zhang, Modifications on reduced titanium dioxide photocatalysts: a review. J. Photochem. Photobiol. C 32, 21–39 (2017)

    Google Scholar 

  4. H.Q. Le et al., A review and meta-analysis of occupational titanium dioxide exposure and lung cancer mortality. J. Occup. Environ. Med. 60, 356–367 (2018)

    Google Scholar 

  5. N. Khatun et al., Anatase to rutile phase transition promoted by vanadium substitution in TiO2: a structural, vibrational and optoelectronic study. Ceram. Int. 43(16), 14128–14134 (2017)

    Google Scholar 

  6. X. Zhu et al., The effect of heat treatment on the anatase–rutile phase transformation and photocatalytic activity of Sn-doped TiO 2 nanomaterials. RSC Adv. 8(26), 14249–14257 (2018)

    ADS  Google Scholar 

  7. H. Albetran et al., Dynamic diffraction studies on the crystallization, phase transformation, and activation energies in anodized titania nanotubes. Nanomaterials 8(2), 122 (2018)

    Google Scholar 

  8. J. Li et al., Unfolding the anatase-to-rutile phase transition in TiO2 nanotubes using X-ray spectroscopy and spectromicroscopy. J. Phys. Chem. C 120(38), 22079–22087 (2016)

    Google Scholar 

  9. N.C. Verissimo et al., In situ characterization of the effects of Nb and Sn on the anatase–rutile transition in TiO2 nanotubes using high-temperature X-ray diffraction. Appl. Surf. Sci. 307, 372–381 (2014)

    Google Scholar 

  10. A.K. Tripathi et al., Study of structural transformation in TiO2 nanoparticles and its optical properties. J. Alloy. Compd. 549, 114–120 (2013)

    Google Scholar 

  11. M. Rezaee, S.M.M. Khoie, K.H. Liu, The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO 2: An XRD and Raman spectroscopy investigation. Cryst. Eng. Commun. 13(16), 5055–5061 (2011)

    Google Scholar 

  12. C.T. Cherian et al., (N, F)-Co-doped TiO 2: synthesis, anatase–rutile conversion and Li-cycling properties. Cryst. Eng. Commun. 14(3), 978–986 (2012)

    Google Scholar 

  13. M.C. Mathpal et al., Effect of annealing temperature on Raman spectra of TiO2 nanoparticles. Chem. Phys. Lett. 555, 182–186 (2013)

    ADS  Google Scholar 

  14. A. Nakaruk, D. Ragazzon, C. Sorrell, Anatase–rutile transformation through high-temperature annealing of titania films produced by ultrasonic spray pyrolysis. Thin Solid Films 518(14), 3735–3742 (2010)

    ADS  Google Scholar 

  15. Silva, A.L.D., Anatase-rutile phase stability and photocatalytic activity of Nb2O5-doped TiO2. 2016.

  16. M. Salari et al., Enhancement of the electrochemical capacitance of TiO 2 nanotube arrays through controlled phase transformation of anatase to rutile. Phys. Chem. Chem. Phys. 14(14), 4770–4779 (2012)

    Google Scholar 

  17. K. Zakrzewska, M. Radecka, TiO 2-based nanomaterials for gas sensing—influence of anatase and rutile contributions. Nanoscale Res. Lett. 12(1), 89 (2017)

    Google Scholar 

  18. S. Mondal, R. Madhuri, P.K. Sharma, PVA assisted low temperature anatase to rutile phase transformation (ART) and properties of titania nanoparticles. J. Alloy. Compd. 646, 565–572 (2015)

    Google Scholar 

  19. P.M. Faia, E.L. Jesus, C.S. Louro, TiO2: WO3 composite humidity sensors doped with ZnO and CuO investigated by impedance spectroscopy. Sens. Actuators B Chem. 203, 340–348 (2014)

    Google Scholar 

  20. A. Radhi, K. Behdinan, Identification of crystal structures in atomistic simulation by predominant common neighborhood analysis. Comput. Mater. Sci. 126, 182–190 (2017)

    Google Scholar 

  21. A. Radhi, V. Iacobellis, K. Behdinan, A cumulative approach to crystalline structure characterization in atomistic simulations. J. Phys. Chem. C 122, 13156–13165 (2018)

    Google Scholar 

  22. H. Tsuzuki, P.S. Branicio, J.P. Rino, Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput. Phys. Commun. 177(6), 518–523 (2007)

    ADS  Google Scholar 

  23. A. Zulhairun et al., High-flux polysulfone mixed matrix hollow fiber membrane incorporating mesoporous titania nanotubes for gas separation. Sep. Purif. Technol. 180, 13–22 (2017)

    Google Scholar 

  24. A. El-Sayed et al., Defect states determined the performance of dopant-free anatase nanocrystals in solar fuel cells. Sol. Energy 144, 445–452 (2017)

    ADS  Google Scholar 

  25. A. Radhi et al., Unraveling a thermodynamic ensemble at the quasicontinuum scale: interplay of van der Waals forces without all the atoms. J. Phys. Chem. Solids 153, 110026 (2021)

    Google Scholar 

  26. Tsuzuki, H., Estudo por dinâmica molecular de deformaç oes mecânicas no cobre e nos semicondutores SiC e InP. 2008, PhD Thesis.

  27. H. Tsuzuki, J. Rino, P. Branicio, Dynamic behaviour of silicon carbide nanowires under high and extreme strain rates: a molecular dynamics study. J. Phys. D Appl. Phys. 44(5), 055405 (2011)

    ADS  Google Scholar 

  28. V. Iacobellis, A. Radhi, K. Behdinan, A bridging cell multiscale modeling of carbon nanotube-reinforced aluminum nanocomposites. Compos. Struct. 202, 406–412 (2018)

    Google Scholar 

  29. D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications, vol. 1 (Elsevier, Amsterdam, 2001)

    MATH  Google Scholar 

  30. A.P. Thompson et al., LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022)

    Google Scholar 

  31. E.B. Tadmor, R.E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  32. A.P. Sutton, Temperature-dependent interatomic forces. Philos. Mag. A 60(2), 147–159 (1989)

    ADS  Google Scholar 

  33. R. LeSar, R. Najafabadi, D. Srolovitz, Finite-temperature defect properties from free-energy minimization. Phys. Rev. Lett. 63(6), 624 (1989)

    ADS  Google Scholar 

  34. B. Liu et al., The atomic-scale finite element method. Comput. Methods Appl. Mech. Eng. 193(17–20), 1849–1864 (2004)

    MATH  ADS  Google Scholar 

  35. L.M. Dupuy et al., Finite-temperature quasicontinuum: molecular dynamics without all the atoms. Phys. Rev. Lett. 95(6), 060202 (2005)

    ADS  Google Scholar 

  36. F. Calvo, D. Bonhommeau, P. Parneix, Multiscale dynamics of cluster fragmentation. Phys. Rev. Lett. 99(8), 083401 (2007)

    ADS  Google Scholar 

  37. M. Müller, K.C. Daoulas, Speeding up intrinsically slow collective processes in particle simulations by concurrent coupling to a continuum description. Phys. Rev. Lett. 107(22), 227801 (2011)

    ADS  Google Scholar 

  38. A. Radhi, K. Behdinan, Contemporary time integration model of atomic systems using a dynamic framework of finite element Lagrangian mechanics. Comput. Struct. 193, 128–138 (2017)

    Google Scholar 

  39. T. Belytschko et al., Nonlinear Finite Elements for Continua and Structures (Wiley, New York, 2013)

    MATH  Google Scholar 

  40. V. Murti, Y. Wang, S. Valliappan, Numerical inverse isoparametric mapping in 3D FEM. Comput. Struct. 29(4), 611–622 (1988)

    MATH  Google Scholar 

  41. P.K. Naicker et al., Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J. Phys. Chem. B 109(32), 15243–15249 (2005)

    Google Scholar 

  42. W. Cao et al., Molecular behavior of water on titanium dioxide nanotubes: a molecular dynamics simulation study. J. Chem. Eng. Data 61(12), 4131–4138 (2016)

    Google Scholar 

  43. L. Momenzadeh et al., Determination of the lattice thermal conductivity of the TiO2 polymorphs rutile and anatase by molecular dynamics simulation. Comput. Condensed Matter 17, e00342 (2018)

    Google Scholar 

  44. R. Zhou, Metal oxides and related nanostructures, in Modeling of Nanotoxicity. (Springer, New York, 2015), pp.115–130

    Google Scholar 

  45. S. Lee et al., Synergistic design of anatase–rutile TiO2 nanostructured heterophase junctions toward efficient photoelectrochemical water oxidation. Coatings 10(6), 557 (2020)

    Google Scholar 

  46. S.P. Krumdieck et al., Nanostructured TiO2 anatase-rutile-carbon solid coating with visible light antimicrobial activity. Sci Rep 9(1), 1883 (2019)

    ADS  Google Scholar 

  47. S. Zhuiykov et al., Wafer-scale fabrication of conformal atomic-layered TiO2 by atomic layer deposition using tetrakis (dimethylamino) titanium and H2O precursors. Mater. Des. 120, 99–108 (2017)

    Google Scholar 

  48. M.C. Payne et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64(4), 1045 (1992)

    ADS  Google Scholar 

  49. G.J. Martyna, D.J. Tobias, M.L. Klein, Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101(5), 4177–4189 (1994)

    ADS  Google Scholar 

  50. A. Radhi, K. Behdinan. Crystalline characterization in atomistic simulation by predominant and cumulative atomic common neighborhood perspective. in 2nd International Conference and Exhibition on Materials Science and Chemistry. 2017. Berlin: Conference Series.

  51. H. Zhang, J.F. Banfield, Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J. Mater. Res. 15(2), 437–448 (2000)

    ADS  Google Scholar 

  52. J. Muscat, V. Swamy, N.M. Harrison, First-principles calculations of the phase stability of TiO 2. Phys. Rev. B 65(22), 224112 (2002)

    ADS  Google Scholar 

  53. H.J.C. Berendsen et al., Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984)

    ADS  Google Scholar 

  54. Nano Indenters from Micro Star Technologies, Revision 2.3. Micro Star Technologies

  55. D. Frenkel, B. Smit, Understanding Molecular Simulations: from Algorithms to Applications (Academic press, New York, 2002)

    MATH  Google Scholar 

  56. V. Iacobellis, K.J.T.C.M.S. Behdinan, Bridging Cell Multiscale Modeling of Nanoindentation at Finite Temperature. 2013. 2.

  57. C. Qiu et al., Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl. Surf. Sci. 305, 101–110 (2014)

    ADS  Google Scholar 

  58. B. Luan, T. Huynh, R. Zhou, Simplified TiO2 force fields for studies of its interaction with biomolecules. J Chem Phys 142(23), 234102 (2015)

    ADS  Google Scholar 

  59. E. Shojaee, M. Mohammadizadeh, First-principles elastic and thermal properties of TiO2: a phonon approach. J. Phys. Condens. Matter 22(1), 015401 (2009)

    ADS  Google Scholar 

  60. M. Iuga, G. Steinle-Neumann, J. Meinhardt, Ab-initio simulation of elastic constants for some ceramic materials. Eur. Phys. J. B 58(2), 127–133 (2007)

    ADS  Google Scholar 

  61. D. Huang, Q. Zhang, P. Qiao, Molecular dynamics evaluation of strain rate and size effects on mechanical properties of FCC nickel nanowires. Comput. Mater. Sci. 50(3), 903–910 (2011)

    Google Scholar 

  62. Y.-H. Wen, Z.-Z. Zhu, R.-Z. Zhu, Molecular dynamics study of the mechanical behavior of nickel nanowire: strain rate effects. Comput. Mater. Sci. 41(4), 553–560 (2008)

    MathSciNet  Google Scholar 

  63. P.S. Branício, J.-P. Rino, Large deformation and amorphization of Ni nanowires under uniaxial strain: a molecular dynamics study. Phys. Rev. B 62(24), 16950 (2000)

    ADS  Google Scholar 

  64. B. Tang, R. Yang, Molecular dynamics study of uniaxial deformation in perfect and defective aluminum. Chin. J. Phys. 53(7) (2015)

  65. D.J. Shuman, A.L. Costa, M.S. Andrade, Calculating the elastic modulus from nanoindentation and microindentation reload curves. Mater. Charact. 58(4), 380–389 (2007)

    Google Scholar 

  66. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    ADS  Google Scholar 

  67. W. Yan et al., Some issues on nanoindentation method to measure the elastic modulus of particles in composites. Compos. B Eng. 42(8), 2093–2097 (2011)

    Google Scholar 

  68. S. Muraishi, Mixture rule for indentation derived Young’s modulus in layered composites. Thin Solid Films 518(1), 233–246 (2009)

    ADS  Google Scholar 

  69. R. Gracie, T. Belytschko, An adaptive concurrent multiscale method for the dynamic simulation of dislocations. Int J Numer Methods Eng 86(4–5), 575–597 (2011)

    MATH  Google Scholar 

  70. I. Gheewala, R. Smith, S. Kenny, Nanoindentation and nanoscratching of rutile and anatase TiO2 studied using molecular dynamics simulations. J. Phys. Condens. Matter 20(35), 354010 (2008)

    Google Scholar 

Download references

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support. All simulations were done the Advanced Research Lab for Multifunctional Lightweight Structures (ARL-MLS).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design as done by AR and VI. Literature review, methodology, validation, formal analysis, investigation, data collection, resources, data analysis and interpretation was done by AR. Writing—original draft preparation was done by AR while writing—review and editing was done by AR and VI, respectively. Supervision and project administration was shared between VI and KB while funding acquisition was accomplished by KB.

Corresponding author

Correspondence to Ali Radhi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 137 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhi, A., Iacobellis, V. & Behdinan, K. Parametric crystalline characterization of Anatase/Rutile polymorphic ceramic. Appl. Phys. A 129, 295 (2023). https://doi.org/10.1007/s00339-023-06562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06562-9

Keywords

Navigation