Skip to main content
Log in

Influence of composite mixtures between nematic liquid crystal and porous carbon nanoparticles towards photoluminescence and UV absorbance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The optical parameters of the liquid crystalline materials can be tuned by the dispersion of nanoparticles. Concentration of dopant in the host LC material affects its optical properties significantly, which makes the dispersed system suitable for LC-based devices. In the present investigation, we have studied the effect of different concentrations of nanoparticles on the optical properties of LC, as a guest–host system, where PCNP is guest material and NLC is host material. Porous carbon nanoparticles (PCNPs) were dispersed into the nematic liquid crystal (NLC) in three different concentrations. Optical parameters were measured for pure NLC and NLC-PCNP composites. Photoluminescence (PL) study was performed and it was found that the PL intensity increased for the PCNP dispersed system. High photoluminescence has much importance in the luminescent displays. Full width half maxima (FWHM) were also determined by the Gaussian fitting of PL intensity data. UV absorbance was also measured which gets increased for the PCNP dispersed NLC system when compared to pure NLC. Optical bandgap was found to be reduced after the dispersion of PCNP into NLC. Several other parameters such as absorption coefficient and optical density were also determined. The proposed work may be significant for the liquid crystal displays (LCDs) and other devices which require less bandgap materials. This work may also put some light on the effect of dopants on the LC material in the research based on guest–host system. Increasing the photoluminescence and creating less bandgap materials using carbon nanoparticles is a real challenge, and porous nanoparticles used here overcome this challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data available upon request.

References

  1. D. Andrienko, Introduction to Liquid Crystals. International Max Planck Research School, Bad Marienberg (2006).

  2. H. Coles, S. Morris, Nat. Photon. 4, 676 (2010)

    ADS  Google Scholar 

  3. S.P. Yadav, K.K. Pandey, A.K. Misra, R. Manohar, Acta Phys. Pol. A 199, 824 (2011)

    ADS  Google Scholar 

  4. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1993)

    Google Scholar 

  5. M. Pande, P.K. Tripathi, A.K. Misra, S. Manohar, R. Manohar, S. Singh, Appl. Phys. A. 122, 217 (2016)

    ADS  Google Scholar 

  6. I.C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995)

    Google Scholar 

  7. P. Klysubun, Nonlinear optical studies of dye-doped nematic liquid crystals. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Virginia (2002)

  8. S. Yilmaz, A. Bozkurt, Mater. Chem. Phys. 107, 410 (2008)

    Google Scholar 

  9. L. Marrucci, Y.R. Shen, The Optics of Thermotropic Liquid Crystals, ed. by R. Sambles, S. Elston (Taylor and Francis, London, 1997)

    Google Scholar 

  10. I. Janossy, L. Csillag, A.D. Lloyd, Phys. Rev. A 44, 8410 (1991)

    ADS  Google Scholar 

  11. S.P. Yadav, M. Pande, R. Manohar, S. Singh, Liq. Cryst. 40, 1503 (2013)

    Google Scholar 

  12. S.E. Hicks, S.P. Hurley, Y.C. Yang, D.K. Yang, Soft Matter 9, 3834 (2013)

    ADS  Google Scholar 

  13. B.R. Jian, C.Y. Tang, W. Lee, Carbon 49, 910 (2011)

    Google Scholar 

  14. W.K. Nayek, S. Ghos, S. Karan, T.P. Majumder, S.K. Roy, Appl. Phys. Lett. 93, 112905–112911 (2008)

    ADS  Google Scholar 

  15. W.K. Lee, S.J. Hwang, M.J. Cho, H.G. Park, J.W. Han, S. Song, J.H. Jang, D.S. Seo, Nanoscale 5, 193 (2013)

    ADS  Google Scholar 

  16. Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, J. West, Appl. Phys. Lett. 82, 1917 (2003)

    ADS  Google Scholar 

  17. F. Li, O. Buchnev, C.I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, J.L. West, Phys. Rev. Lett. 97, 147801 (2006)

    ADS  Google Scholar 

  18. W.T. Chen, P.S. Chen, C.Y. Chao, J. Appl. Phys. 48, 015006 (2009)

    Google Scholar 

  19. T. Zhang, C. Zhong, J. Xu, J. Appl. Phys. 48, 055002 (2009)

    Google Scholar 

  20. Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, S. Kobayashi, Appl. Phys. Lett. 81, 2845 (2002)

    ADS  Google Scholar 

  21. S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi, N. Toshima, J. Disp. Technol. 2, 121 (2006)

    ADS  Google Scholar 

  22. R. Genc, M.O. Alas, E. Harputlu, S. Repp, N. Kremer, M. Castellano, S.G. Colak, K. Ocakoglu, E. Erdem, Sci. Rep. 7(1), 11222 (2017)

    ADS  Google Scholar 

  23. M.Ö. Alaş, A. Güngör, R. Genç, E. Erdem, Nanoscale 11(27), 12804 (2019)

    Google Scholar 

  24. P.P. Van, C.H. Thai, H.N. Xuan, M.A. Wahab, Eur. J. Mech. A. Solids 78, 103851 (2019)

    MathSciNet  Google Scholar 

  25. C.L. Thanh, T.N. Nguyen, T.H. Vu, S. Khatir, M.A. Wahab, Eng. Comput. 38, 449 (2022)

    Google Scholar 

  26. T.C. Le, K.D. Nguyen, M.H. Le, T.S. To, P.P. Vu, M.A. Wahab, Phys. B 631, 413726 (2022)

    Google Scholar 

  27. V.T. Tran, T.K. Nguyen, H.N. Xuan, M.A. Wahab, Thin-Walled Struct. Part B 182, 110267 (2023)

    Google Scholar 

  28. G. Zhang, Thesis, Stressed Liquid Crystals: Properties and Applications (Kent State University, Ohio, 2007), p.88

    Google Scholar 

  29. S.T. Wu, U. Efron, L.D. Hess, Appl Opt. 23(21), 3911 (1984)

    ADS  Google Scholar 

  30. S. Doke, K. Sonawane, V.R. Reddy, P. Ganguly, S. Mahamuni, Liq Cryst. 45(10), 1518 (2018)

    Google Scholar 

  31. V.S. Bhat, T.J. Jayeoye, T. Rujiralai, U. Sirimahachai, K.F. Chong, G. Hegde, Nano Select 1(2), 226–243 (2020)

    Google Scholar 

  32. A. Kumar, G. Hegde, S. Manaf, Z. Ngaini, K.V. Sharma, Chem. Commun. 50, 12702 (2014)

    Google Scholar 

  33. A. Rastogi, G. Hegde, T. Manohar, R. Manohar, Liq. Cryst. 48(6), 812 (2021)

    Google Scholar 

  34. G. Pathak, G. Hegde, S.S. Punjalkatte, T. Rujiralai, G. Hegde, V. Prasad, Liquid Crystals, 1–12 (2021).

  35. G. Pathak, G. Hegde, V. Prasad, Liq. Cryst. 48(4), 579 (2021)

    Google Scholar 

  36. G. Pathak, S. Pandey, R. Katiyar, A. Srivastava, R. Dabrowski, K. Garbat, R. Manohar, J. Lumin. 192, 33 (2017)

    Google Scholar 

  37. D.P. Singh, S.K. Gupta, A. Srivastava, R. Manohar, J. Lumin. 139, 60 (2013)

    Google Scholar 

  38. W.K. Bae, M.K. Nam, K. Char, S.H. Lee, Chem. Mater. 20, 5307 (2008)

    Google Scholar 

  39. T. Vimal, D.P. Singh, K. Agrahari, A. Srivastava, R. Manohar, Phot. Let. Pol. 8(1), 23–25 (2016)

    Google Scholar 

  40. J. Tauc, Mater. Res. Bull. 3, 37 (1968)

    Google Scholar 

  41. A.S. Hassanien, A.A. Ak, Superlattices Microstruct. 89, 153 (2016)

    ADS  Google Scholar 

  42. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Google Scholar 

  43. W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)

    Google Scholar 

  44. F. Urbach, Phys. Rev. 92, 1324 (1953)

    ADS  Google Scholar 

  45. M. El-Hagary, M.E. Ismail, E.R. Shaaban, A. El-Taher, Rad. Phys. Chem. 81, 1572 (2012)

    ADS  Google Scholar 

  46. K. Rakesh, S.R. Sonker, S.R. Sabhajeet, B.C. Yadav, J Mater Sci: Mater Electron. 27, 11726 (2016)

    Google Scholar 

  47. A.S. Hassanien, A.A. Akl, J. Alloys Compd. 648, 280 (2015)

    Google Scholar 

  48. B. Van Zeghbroeck, Principles of Electronic Devices: Principle of Semiconductor Devices, 1997.

Download references

Acknowledgements

The author Govind Pathak is thankful to CSIR, New Delhi, India (File No. 09/0107(12335)/2021-EMR-I) for financial assistance in the form of Research Associate fellowship. Rajiv Manohar is also thankful to the DST, India for the project and financial help. The authors are also thankful to APJ Abdul Kalam Centre for Innovation for the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Manohar.

Ethics declarations

Conflict of interest

There is no conflict of interest between the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, G., Rujiralai, T., Hegde, G. et al. Influence of composite mixtures between nematic liquid crystal and porous carbon nanoparticles towards photoluminescence and UV absorbance. Appl. Phys. A 129, 261 (2023). https://doi.org/10.1007/s00339-023-06550-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06550-z

Keywords

Navigation