Skip to main content
Log in

Accuracy and precision of sensing fructose concentration in water using new fractal antenna biosensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The main objective of this study is to develop a new fractal antenna with radio characteristics for the detection of the concentration of fructose in water for uses in biosensors. For this, we have designed and studied three prototypes of fractal antennas operating in different working bands. For the detection of the concentration of fructose, we used, a small container placed on the upper face of the antenna. This reception and each time filled with a different concentration of fructose, the concentrations modify the radioelectric behavior of the fractal antenna which is reflected by a shift/mismatch of the operating bands (resonance frequencies) of the different prototypes. After analysis and study of measurement and simulation results, a correspondence between the frequency behavior with or without fructose concentration allows us to deduce a correspondence table between the fructose concentrations and the reflection coefficient of the antenna (resonance frequency). The experimental study proved that our realized sensor exhibit and miniaturization (electrical size of λ0/8), high sensitivity and good linearity of the sensor with two methods: frequency method with average sensitivity of 0.132 and S11 parameter method with average sensitivity of 0.1862. The proposed structure showed an ability to detect a low concentration fructose. These aqueous solutions represented in the form of known sugars such as fructose added in low concentration give realization of agro-food and biomedical sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. B. Mandelbrot, The fractal geometry of nature (W.H. Freeman and Company, New York, 1975)

    Google Scholar 

  2. C. Puente, J. Romeu, R. Pous, X. Garcia, F. Benitez, Fractal multiband antenna based on the Sierpinski gasket. Electron. Lett. 32(1), 1–2 (1996)

    Article  ADS  Google Scholar 

  3. C. Puente, J. Romeu, R. Pous, J. Ramis, A. Hijazo, Small but long Koch fractal monopole. Electron. Lett. 34(1), 9–10 (1998)

    Article  ADS  Google Scholar 

  4. Z. Mezache, A. Slimani, F. Benabdelaziz, Design and analysis of a novel miniaturized microstrip fractal antenna for WLAN/WiMAX applications. Serb. J. Electr. Eng. 17(2), 213–222 (2020)

    Article  Google Scholar 

  5. Z. Mezache, C. Zara, F. Benabdelaziz, Design of a novel chiral fractal resonator. Serb. J. Electr. Eng. 16(3), 377–385 (2019)

    Article  Google Scholar 

  6. Z. Mezache, Analysis of multiband graphene-based terahertz square-ring fractal antenna. Ukr. J. Phys. Opt. 21(2), 93–102 (2020)

    Article  Google Scholar 

  7. H.T. Sediq, J. Nourinia, C. Ghobadi, B. Mohammadi, An epsilon-shaped fractal antenna for UWB MIMO applications. Appl. Phys. A 128(9), 845 (2022)

    Article  ADS  Google Scholar 

  8. E. Reyes-Vera, G. Acevedo-Osorio, M. Arias-Correa, D.E. Senior, A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization. Sensors 19(8), 1936 (2019)

    Article  ADS  Google Scholar 

  9. M. Kaur, J.S. Sivia, ANN-based design of hybrid fractal antenna for biomedical applications. Int. J. Electron. 106(8), 1184–1199 (2019)

    Article  Google Scholar 

  10. R.A. Alahnomi, Z. Zakaria, Z.M. Yussof, A.A. Althuwayb, A. Alhegazi, H. Alsariera, N.A. Rahman, Review of recent microwave planar resonator-based sensors: techniques of complex permittivity extraction, applications, open challenges and future research directions. Sensors 21(7), 2267 (2021)

    Article  ADS  Google Scholar 

  11. R.B. Khadase, A. Nandgaonkar, B. Iyer, A. Wagh, Multilayered implantable antenna biosensor for continuous glucose monitoring: design and analysis. Prog. Electromagn. Res. C 114, 173–184 (2021)

    Article  Google Scholar 

  12. S.M. Obaid, T.A. Elwi, M. Ilyas, Fractal Minkowski-shaped resonator for noninvasive biomedical measurements: blood glucose test. Prog. Electromagn. Res. C 107, 143–156 (2021)

    Article  Google Scholar 

  13. C.S. Lee, B. Bai, Q.R. Song, Z.Q. Wang, G.F. Li, Open complementary split-ring resonator sensor for dropping-based liquid dielectric characterization. IEEE Sens. J. 19(24), 11880–11890 (2019)

    Article  ADS  Google Scholar 

  14. M. Kaur, J.S. Sivia, Artificial bee colony algorithm based modified circular-shaped compact hybrid fractal antenna for industrial, scientific, and medical band applications. Int. J. RF Microwave Comput. Aided Eng. 32(3), e22994 (2022)

    Article  Google Scholar 

  15. Z.U.A. Jaffri, Z. Ahmad, A. Kabir, S.S.H. Bukhari, A novel miniaturized Koch–Minkowski hybrid fractal antenna. Microelectron. Int. 39(1), 22–37 (2022)

    Article  Google Scholar 

  16. A. Ebrahimi, W. Withayachumnankul, S.F. Al-Sarawi, D. Abbott, Microwave microfluidic sensor for determination of glucose concentration in water. in 2015 IEEE 15th Mediterranean Microwave Symposium (MMS) (IEEE, 2015), pp. 1–3

  17. A.A.M. Bahar, Z. Zakaria, S.R. Ab Rashid, A.A.M. Isa, R.A. Alahnomi, High-efficiency microwave planar resonator sensor based on bridge split ring topology. IEEE Microwave Wirel. Compon. Lett. 27(6), 545–547 (2017)

    Article  Google Scholar 

  18. P. Vélez, L. Su, K. Grenier, J. Mata-Contreras, D. Dubuc, F. Martín, Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids. IEEE Sens. J. 17(20), 6589–6598 (2017)

    Article  ADS  Google Scholar 

  19. E.L. Chuma, Y. Iano, G. Fontgalland, L.L.B. Roger, Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator. IEEE Sens. J. 18(24), 9978–9983 (2018)

    Article  ADS  Google Scholar 

  20. A.J. Cole, P.R. Young, Chipless liquid sensing using a slotted cylindrical resonator. IEEE Sens. J. 18(1), 149–156 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Zinelabiddine Mezache.

Ethics declarations

Conflict of interest

No conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezache, Z., Mansoul, A. & Merabet, A.H. Accuracy and precision of sensing fructose concentration in water using new fractal antenna biosensor. Appl. Phys. A 129, 267 (2023). https://doi.org/10.1007/s00339-023-06532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06532-1

Keywords

Navigation