Skip to main content
Log in

Molecular clocks for isotopic analysis

  • S.I. : 50th Anniversary of Applied Physics
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Femtosecond (fs) laser-induced molecular alignment is a powerful technology for orienting a randomly aligned ensemble of molecules along the laser beam polarization direction. Molecular alignment combined with appropriate detection allows for different species to serve as molecular clocks, with each of them rotating at different but well-defined frequencies. This feature is promising for improving gas detection selectivity. In this work, we use molecular alignment combined with Weak Field Polarization (WFP) for the detection of the isotopes of 12C16O2 and 12C18O2. We demonstrate that 2D wavelength-resolved WFP signal acquisition, coupled with advanced 2D wavelength-time and wavelength-frequency analysis, provides complementary information over traditional wavelength-integrated WFP analysis. Information-rich datasets unveil distinct spectral-temporal and spectral-frequency grouping patterns which vary as a function of revival fraction increments for the isotopes of interest. These findings underline the potential of this method in enhancing gas phase detection selectivity for a variety of laboratory and future gas remote sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.

Similar content being viewed by others

Data availability

Data generated during the current study are available from the corresponding author on reasonable request.

References

  1. X. Liu, L. Chen, H. Peng, G. Wang, N.S. Belshaw, H. Zheng, S. Hu, Z. Zhu, Anal. Chim. Acta 1215, 339980 (2022)

    Article  Google Scholar 

  2. C. Werner, H. Schnyder, M. Cuntz, C. Keitel, M.J. Zeeman, T.E. Dawson, F.-W. Badeck, E. Brugnoli, J. Ghashghaie, T.E.E. Grams, Z.E. Kayler, M. Lakatos, X. Lee, C. Máguas, J. Ogée, K.G. Rascher, R.T.W. Siegwolf, S. Unger, J. Welker, L. Wingate, A. Gessler, Biogeosciences 9, 3083 (2012)

    Article  ADS  Google Scholar 

  3. T.K. Bauska, D. Baggenstos, E.J. Brook, A.C. Mix, S.A. Marcott, V.V. Petrenko, H. Schaefer, J.P. Severinghaus, J.E. Lee, Proc. Natl. Acad. Sci. 113, 3465 (2016)

    Article  ADS  Google Scholar 

  4. I. Tea, A. De Luca, A.-M. Schiphorst, M. Grand, S. Barillé-Nion, E. Mirallié, D. Drui, M. Krempf, R. Hankard, G. Tcherkez, Metabolites 11, 370 (2021)

    Article  Google Scholar 

  5. L.S. KaziTani, A.T. Gourlan, N. Dennouni-Medjati, P. Telouk, M. Dali-Sahi, Y. Harek, Q. Sun, J. Hackler, M. Belhadj, L. Schomburg, L. Charlet, Front. Med. (2021). https://doi.org/10.3389/fmed.2021.698167

    Article  Google Scholar 

  6. K. Schilling, A.L. Harris, A.N. Halliday, C.J. Schofield, H. Sheldon, S. Haider, F. Larner, Front. Med. (2022). https://doi.org/10.3389/fmed.2021.746532

    Article  Google Scholar 

  7. C.-I. Li, H. Matsuo, J. Otomo, ECS Trans. 91, 2761 (2019)

    Article  Google Scholar 

  8. S. Boulyga, S. Konegger-Kappel, S. Richterb, L. Sangel, J. Anal. At. Spectrom. 30, 1469 (2015)

    Article  Google Scholar 

  9. C.M. Fallon, W.R. Bower, I.C. Lyon, F.R. Livens, P. Thompson, M. Higginson, J. Collins, S.L. Heath, G.T.W. Law, ACS Omega 5, 296 (2019)

    Article  Google Scholar 

  10. E.J. Kautz, A. Devaraj, D.J. Senor, S.S. Harilal, Opt. Express 29, 4936 (2021)

    Article  ADS  Google Scholar 

  11. N. Gentile, R.T.W. Siegwolf, P. Esseiva, S. Doyle, K. Zollinger, O. Delémont, Forensic Sci. Int. 251, 139 (2015)

    Article  Google Scholar 

  12. M. L. Adamic, D. L. Baeck, J. G.Eisenmenger, R. V. Fox, P. A. Hahn, D.D. Jenson, T. E. Lister, J. E. Olson, M. G. Watrous, Transition of Iodine Analysis to Accelerator Mass Spectrometry, U.S. Department of Energy, Report, IN13-AMS255–3TE, (2015).

  13. C. R. Philbrick and D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. D. Hallen, Remote sensing of chemical species in the atmosphere, Fourth Symposium on Lidar Atmospheric Applications.

  14. E.V. Browell, S. Ismail, W.B. Grant, Appl. Phys. B 67, 399 (1998)

    Article  ADS  Google Scholar 

  15. U. Platt, D. Perner, Springer Ser. Opt. Sci. 39, 95 (1983)

    Google Scholar 

  16. G.C.-Y. Chan, I. Choi, X. Mao, V. Zorba, O.P. Lam, D.K. Shuh, R.E. Russo, Spectrochimica Acta Part B 122, 31 (2016)

    Article  ADS  Google Scholar 

  17. C.A. Smith, M.A. Martinez, D.K. Veirs, D.A. Cremers, Spectrochim. Acta, Part B 57, 929 (2002)

    Article  ADS  Google Scholar 

  18. I. Choi, G.C.-Y. Chan, X. Mao, D.L. Perry, R.E. Russo, Appl. Spectrosc. 67, 1275 (2013)

    Article  ADS  Google Scholar 

  19. W. Pietsch, A. Petit, A. Briand, Spectrochim. Acta Part B 53, 751 (1998)

    Article  ADS  Google Scholar 

  20. G.C.-Y. Chan, X. Mao, I. Choi, A. Sarkar, O.P. Lam, D.K. Shuh, R.E. Russo, Spectrochim. Acta Part B Atomic Spectrosc. 89, 40 (2013)

    Article  ADS  Google Scholar 

  21. R.E. Russo, A.A. Bol’shakov, X.L. Mao, C.P. McKay, D.L. Perry, O. Sorkhabi, Spectrochim. Acta B 66, 99 (2011)

    Article  ADS  Google Scholar 

  22. X. Mao, A.A. Bol’shakov, I. Choi, C.P. McKay, D.L. Perry, O. Sorkhabi, R.E. Russo, Spectrochim. Acta Part B Atomic Spectrosc. 66, 767 (2011)

    Article  ADS  Google Scholar 

  23. A.A. Bol’shakov, X. Mao, J.J. Gonzalez, R.E. Russo, J. Anal. At. Spectrom. 31, 119 (2016)

    Article  Google Scholar 

  24. A. Sarkar, X. Mao, G.C.-Y. Chan, R.E. Russo, Spectrochim. Acta Part B 88, 46 (2013)

    Article  ADS  Google Scholar 

  25. M. Dong, X. Mao, J.J. Gonzalez, J. Lu, R.E. Russo, Anal. Chem. 85, 2899 (2013)

    Article  Google Scholar 

  26. S. Fleischer, ISh. Averbukh, Y. Prior, J. Phys. B: At. Mol. Opt. Phys. 41, 074018 (2008)

    Article  ADS  Google Scholar 

  27. S. Fleischer, I.S. Averbukh, Y. Prior, J. Modern Opt. 54, 2641 (2007)

    Article  ADS  Google Scholar 

  28. P. Peng, Y. Bai, N. Li, P. Liu, AIP Adv. 5, 127205 (2015)

    Article  ADS  Google Scholar 

  29. N. Xu, J. Li, J. Li, Z. Zhang, Q. Fan, Lasers—Applications in Science and Industry, ed by Krzysztof Jakubczak (Intechopen, London, 2011), p.229

    Google Scholar 

  30. E.F. Thomas, A.A. Søndergaard, B. Shepperson, N.E. Henriksen, H. Stapelfeldt, Phys. Rev. Lett. (2018). https://doi.org/10.1103/PhysRevLett.120.163202

    Article  Google Scholar 

  31. S. Fleischer, ISh. Averbukh, Y. Prior, Phys. Rev. A 74, 041403 (2006)

    Article  ADS  Google Scholar 

  32. S. Fleischer, Y. Khodorkovsky, E. Gershnabel, Y. Prior, ISh. Averbukh, Isr. J. Chem. 52, 414 (2012). https://doi.org/10.1002/ijch.201100161

    Article  Google Scholar 

  33. H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)

    Article  ADS  Google Scholar 

  34. A. Goban, S. Minemoto, H. Sakai, Phys. Rev. Lett. 101, 013001 (2008)

    Article  ADS  Google Scholar 

  35. S. Zamith, Z. Ansari, F. Lepine, M.J.J. Vrakking, Opt. Lett. 30, 2326 (2005)

    Article  ADS  Google Scholar 

  36. J.P. Cryan, P.H. Bucksbaum, R.N. Coffee, Phys. Rev. A (2009). https://doi.org/10.1103/PhysRevA.80.063412

    Article  Google Scholar 

  37. M. Morgen, W. Price, L. Hunziker, P. Ludowise, M. Blackwell, Y. Chen, Chem. Phys. Lett. 209, 1 (1993)

    Article  ADS  Google Scholar 

  38. B. Lavorel, O. Faucher, M. Morgen, R. Chaux, J. Raman Spectrosc. 31, 77 (2000)

    Article  ADS  Google Scholar 

  39. V. Renard, M. Renard, S. Guérin, Y.T. Pashayan, B. Lavorel, O. Faucher, H.R. Jauslin, Phys. Rev. Lett. (2003). https://doi.org/10.1103/PhysRevLett.90.153601

    Article  Google Scholar 

  40. A. Rouzée, V. Renard, S. Guérin, O. Faucher, B. Lavorel, Phys. Rev. A (2007). https://doi.org/10.1103/PhysRevA.75.013419

    Article  Google Scholar 

  41. T. Kierspel, J. Wiese, T. Mullins, J. Robinson, A. Aquila, A. Barty, R. Bean, R. Boll, S. Boutet, P. Bucksbaum, J. Phys. B At. Mol. Opt. Phys. 48, 204002 (2015)

    Article  ADS  Google Scholar 

  42. S. Minemoto, T. Teramoto, H. Akagi, T. Fujikawa, T. Majima, K. Nakajima, K. Niki, S. Owada, H. Sakai, T. Togashi, K. Tono, S. Tsuru, K. Wada, M. Yabashi, S. Yoshida, A. Yagishita, Sci. Rep. (2016). https://doi.org/10.1038/srep38654

    Article  Google Scholar 

  43. L.L. Connell, T.C. Corcoran, P.W. Joireman, P.M. Felker, Chem. Phys. Lett. 166, 510 (1990)

    Article  ADS  Google Scholar 

  44. L.L. Connell, S.M. Ohline, P.W. Joireman, T.C. Corcoran, P.M. Felker, J. Chem. Phys. 94, 4668 (1991). (7)

    Article  ADS  Google Scholar 

  45. W. Jarzęba, V.V. Matylitsky, A. Weichert, C. Riehn, Phys. Chem. Chem. Phys. 4, 451 (2002)

    Article  Google Scholar 

  46. L. E. Hunziker, (1997). Femtosecond measurements of gas temperatures using raman-induced polarization spectroscopy (Order No. 9828743). Available from Dissertations & Theses @ University of California; ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global. (304344272).

  47. D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 83rd edn. (CRC Press, Boca Raton, 2002). (ISBN 0-8493-0483-0)

    Google Scholar 

  48. G. Graner, C. Rossetti, D. Bailly, Mol. Phys. 58, 627 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianglei Mao or Vassilia Zorba.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships.that could have appeared to influence the work reported in this paper.

Ethical approval

This material is the authors’ own original work, which has not been previously published elsewhere. The paper is not currently being considered for publication elsewhere. All authors have been personally and actively involved in substantial work leading to the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Chirinos, J. & Zorba, V. Molecular clocks for isotopic analysis. Appl. Phys. A 129, 385 (2023). https://doi.org/10.1007/s00339-023-06521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06521-4

Keywords

Navigation