Skip to main content
Log in

Band gap and magnetic properties modulation by substitution of cobalt in ZnO nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A chemical co-precipitation method is used to synthesize the Zn1–xCoxO nanoparticles and then examine its structural, morphological, chemical bond and magnetic properties. A single phase hexagonal wurtzite crystal structure is confirmed by X-ray diffraction for all the samples without any impurity phase. The substitution of Co-doping in ZnO lattice is confirmed by the peak shifting in XRD patterns, and reduction in crystallite size of Co-doped ZnO NPs. The enhanced optical absorption and red shift in band edge is observed in the Co-doped ZnO NPs. The reduced optical bandgap is found in Co dopant and which decreases further with increase in the Co content. M–H measurements show the ferromagnetic behavior of Co-doped ZnO NPs increases with increase in the Co content. This observed ferromagnetism is originated from increased oxygen vacancies which form bound magnetic polarons. These findings promote the usage of Co-doped ZnO materials for potential spintronics and magneto-optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M.Y. Ali, M. Khan, A.T. Karim, M.M. Rahman, M. Kamruzzaman, Effect of Ni doping on structure, morphology and opto-transport properties of spray pyrolised ZnO nano-fiber. Heliyon 6, e03588 (2020)

    Article  Google Scholar 

  2. A.B. Djurisic, X. Chen, Y.H. Leung, A.M.C. Ng, ZnO nanostructures: growth, properties and applications. J. Mater. Chem. 22, 6526–6535 (2012)

    Article  Google Scholar 

  3. A.B. Djurisic, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: material properties and device applications. Prog. Quantum Electron. 34, 191–259 (2010)

    Article  ADS  Google Scholar 

  4. T. Gao, T.H. Wang, Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications. Appl. Phys. A 80, 1451 (2005)

    Article  ADS  Google Scholar 

  5. N. Lathiotakis, A.N. Andriotis, M. Menon, Co doping: a possible pathway for inducing ferromagnetism in ZnO. Phys. Rev. B: Condens. Mater. Phys. 78, 193311 (2008)

    Article  ADS  Google Scholar 

  6. T.A. Abdel-Baset, Y.W. Fang, C.G. Duan, M. Abdel-Hafiez, Magnetic properties of chromium-doped ZnO. J. Supercond. Novel Magn. 29, 1937–1942 (2016)

    Article  Google Scholar 

  7. J.J. Beltrán, C.A. Barrero, A. Punnoose, Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 17, 15284–15296 (2015)

    Article  Google Scholar 

  8. N. Sharma, R. Kant, V. Sharma, S. Kumar, Influence of silver dopant on morphological, dielectric and magnetic properties of ZnO nanoparticles. J. Electr. Mater. 47, 4098–4107 (2018)

    Article  ADS  Google Scholar 

  9. S. Fabbiyola, V. Sailaja, L. John Kennedy, M. Bououdina, J. Judith Vijaya, Optical and magnetic properties of Ni-doped ZnO nanoparticles. J. Alloys Compd. 694, 522–531 (2017)

    Article  Google Scholar 

  10. S.A. Ahmed, Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phys. 7, 604–610 (2017)

    Article  ADS  Google Scholar 

  11. S. Sinha, M. Singh, R. Singh, ZnO based diluted magnetic semiconductors for spintronic device applications: a review. Int. J. Emerg. Res. Manag. Technol 4, 16–20 (2015)

    Google Scholar 

  12. R. Khan, C.I.L. de Araujo, T. Khan, S.A. Khattak, E. Ahmed, A. Khan, B. Ullah, G. Khan, K. Safeen, A. Safeen, Effect of thermal calcination on the structural, dielectric and magnetic properties of (ZnO–Ni) semiconductor. J. Mater. Sci. Mater. Electron. 30, 3396–3404 (2019)

    Article  Google Scholar 

  13. J.J. Chen, M.H. Yu, W.L. Zhou, Room-temperature ferromagnetic Co-doped ZnO nanoneedle array prepared by pulsed laser deposition. Appl. Phy. Lett. 87, 173119 (2005)

    Article  ADS  Google Scholar 

  14. S.Y. Kuo, W.C. Chen, C.P. Cheng, Investigation of annealing-treatment on the optical and electrical properties of sol–gel-derived zinc oxide thin films. Superlattices Microstr. 39, 162–170 (2006)

    Article  ADS  Google Scholar 

  15. S. Deka, R. Pasricha, P.A. Joy, Experimental comparison of the structural, magnetic, electronic, and optical properties of ferromagnetic and paramagnetic polycrystalline Zn1− xCoxO (x= 0, 0.05, 0.1). Phy. Rev. B 74, 033201 (2006)

    Article  ADS  Google Scholar 

  16. I. Djerdj, Z. Jagličic, D. Arčon, M. Niederberger, Co-doped ZnO nanoparticles: Minireview. Nanoscale 2, 1096–1104 (2010)

    Article  ADS  Google Scholar 

  17. W. Li, G. Wang, C. Chen, J. Liao, Z. Li, Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions. Nanomaterials 7, 20 (2017)

    Article  Google Scholar 

  18. R. Kant, D. Sharma, A. Bansal, R. Singh, Structural, optical and dielectric properties of Al/Mn doped ZnO nanoparticles, a comparative study. Mater. Tech. 36, 513–520 (2021)

    Article  Google Scholar 

  19. W.J. Qin, J. Sun, J. Yang, X.W. Du, Control of Cu-doping and optical properties of ZnO quantum dots by laser ablation of composite targets. Mater. Chem. Phys. 130, 425–430 (2011)

    Article  Google Scholar 

  20. J. Li, L. Zhang, J. Zhu, Y. Liu, W. Hao, Aligned ZnO: Co nanorod arrays: Electrophoretic deposition fabrication and magnetic manipulation. Ceram. Int. 41, 3456–3460 (2015)

    Article  Google Scholar 

  21. M. Shatnawi, A.M. Alsmadi, I. Bsoul, B. Salameh, G.A. Alnawashi, F. Al Dweri, F. El Akkad, Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. J. Alloy. Compd. 655, 244–252 (2016)

    Article  Google Scholar 

  22. C. Li, P. Che, C. Sun, W. Li, Effect of cobalt concentration and oxygen vacancy on magnetism of Co doped ZnO nanorods. J Nanosci. Nanotechnol. 16, 2719–2724 (2016)

    Article  Google Scholar 

  23. D.A. Schwartz, D.R. Gamelin, Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. Adv. Mater. 16, 2115–2119 (2004)

    Article  Google Scholar 

  24. M.H. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A.R. Raju, C. Rout, U.V. Waghmare, First principles based design and experimental evidence for a ZnO-based ferromagnet at room temperature. Phys. Rev. Lett. 94, 187204 (2005)

    Article  ADS  Google Scholar 

  25. J. Mohapatra, D.K. Mishra, D. Mishra, A. Perumal, V.R.R. Medicherla, D.M. Phase, S.K. Singh, Room temperature ferromagnetism in Co doped ZnO within an optimal doping level of 5%. Mater. Res. Bull. 47, 1417–1422 (2012)

    Article  Google Scholar 

  26. K.R. Kittilstved, D.A. Schwartz, A.C. Tuan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Direct kinetic correlation of carriers and ferromagnetism in Co2+: ZnO. Phys. Rev. Lett. 97, 037203 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. NS: writing of first draft of the manuscript. RK: writing-review, editing and Conceptualization (lead). VS: formal analysis (supporting).

Corresponding author

Correspondence to Ravi Kant.

Ethics declarations

Conflict of interest

The authors declared that there are no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Kant, R. & Sharma, V. Band gap and magnetic properties modulation by substitution of cobalt in ZnO nanostructures. Appl. Phys. A 129, 223 (2023). https://doi.org/10.1007/s00339-023-06517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06517-0

Keywords

Navigation