Skip to main content
Log in

Effect of microstrain on the magnetic properties of reduced graphene oxide by Fe3O4 nanoparticles: insight from experimental and density functional theory

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this report, we studied the impact of particle size-lattice strain on the magnetic properties of reduced graphene oxide functionalized with iron oxide (rGO: Fe3O4) nanocomposite. The microstrain analysis from X ray diffraction data analysis showed increased microstrain at low atomic concentration of Fe3O4 in rGO. While the effect of rGO functionalization with Fe3O4 leads to overall enhancement of the magnetization (rGO:\(17 \times {10}^{-6}\to\) rGO: Fe3O4 (I): \(24 \times {10}^{-2}\to\) rGO: Fe3O4 (II): \(5.5 \times {10}^{-2}\) emu/g), the microstrain also plays a crucial role. The microstrain-based magnetic enhancement can be attributed to increased defects emanating from Fe atoms. Density function theory calculations showed increased density of state above the Fermi energy, suggesting formation of unoccupied states, which explains the enhanced magnetization. The partial density of state showed C 2p, O 2p and Fe 3d orbital states as the major contributors of the observed magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D.O. Idisi, J.A. Oke, S. Sarma, S.J. Moloi, S.C. Ray, W.F. Pong, A.M. Strydom, J. Appl. Phys. 126, 35301 (2019)

    Google Scholar 

  2. A. Hashmi, J. Hong, J. Magn. Magn. Mater. 355, 7 (2014)

    ADS  Google Scholar 

  3. K. Yang, L. Feng, X. Shi, and Z. Liu, Chemical Society Reviews (2013).

  4. H. Kumazaki, D.S. Hirashima, J. Phys. Soc. Jpn. 76, 64713 (2007)

    Google Scholar 

  5. J.J. Palacios, J. Fernández-Rossier, L. Brey, Phys. Rev. B 77, 195428 (2008)

    ADS  Google Scholar 

  6. Z. Xia, S. Guo, Chem. Soc. Rev. 48, 3265 (2019)

    Google Scholar 

  7. D. Kag, N. Luhadiya, N.D. Patil, S.I. Kundalwal, Int. J. Hydrogen Energy 46, 22599 (2021)

    Google Scholar 

  8. Z. Wu, Z. Ni, Nanophotonics 6, 1219 (2017)

    Google Scholar 

  9. A. Kurlov, A. Gusev, Glass Phys. Chem 33, 276 (2007)

    Google Scholar 

  10. Q.S. Paduano, D.W. Weyburne, A.J. Drehman, J. Cryst. Growth 318, 418 (2011)

    ADS  Google Scholar 

  11. A. Annamalai, A.G. Kannan, S.Y. Lee, D.-W. Kim, S.H. Choi, J.S. Jang, The Journal of Physical Chemistry C 119, 19996 (2015)

    Google Scholar 

  12. M.M. Rosli, T.H.T.A. Aziz, A.R.M. Zain, N. Alias, N.A.A. Malek, N.A. Abdullah, S.K.M. Saad, A.A. Umar, Physica E: Low-Dimensional Syst. Nanostruct. 123, 114203 (2020)

    Google Scholar 

  13. G. Bhattacharya, G. Kandasamy, N. Soin, R.K. Upadhyay, S. Deshmukh, D. Maity, J. McLaughlin, S.S. Roy, RSC Adv. 7, 327 (2017)

    ADS  Google Scholar 

  14. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Zeitschrift Für Kristallographie-Crystalline Mater. 220, 567 (2005)

    ADS  Google Scholar 

  15. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  16. A. Bano, L. Patra, R. Pandey, Appl. Surf. Sci. 569, 150976 (2021)

    Google Scholar 

  17. D.O. Idisi, J.A. Oke, E.M. Benecha, S.J. Moloi, S.C. Ray, Mater. Today: Proc. 44, 5037 (2021)

    Google Scholar 

  18. H. Guoxin, Z. Xu, Fullerenes Nanotubes Carbon Nanostruct. 23, 283 (2015)

    ADS  Google Scholar 

  19. N.A. Zubir, C. Yacou, J. Motuzas, X. Zhang, J.C.D. da Costa, Sci. Rep. 4, 1 (2014)

    Google Scholar 

  20. W. Ouyang, D. Zeng, X. Yu, F. Xie, W. Zhang, J. Chen, J. Yan, F. Xie, L. Wang, H. Meng, Int. J. Hydrogen Energy 39, 15996 (2014)

    Google Scholar 

  21. V. Silva, P. Andrade, M. Silva, L.D.L.S. Valladares, J.A. Aguiar, J. Magn. Magn. Mater. 343, 138 (2013)

    ADS  Google Scholar 

  22. H. Shagholani, S.M. Ghoreishi, M. Mousazadeh, Int. J. Biol. Macromol. 78, 130 (2015)

    Google Scholar 

  23. J. Du, F. Cheng, S. Wang, T. Zhang, J. Chen, Sci. Rep. 4, 1 (2014)

    Google Scholar 

  24. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, World J Nano Sci. Eng. (2014). https://doi.org/10.4236/wjnse.2014.41004

    Article  Google Scholar 

  25. P. Bindu, S. Thomas, J. Theoret. Appl. Phys. 8, 123 (2014)

    ADS  Google Scholar 

  26. M. Roslan, Z. Haider, K. Chaudhary, Mater. Today Commun 25, 101285 (2020)

    Google Scholar 

  27. Z. Peng, X. Chen, Y. Fan, D.J. Srolovitz, D. Lei, Light Sci. Appl 9, 1 (2020)

    Google Scholar 

  28. Y.M. Mos, A.C. Vermeulen, C.J. Buisman, J. Weijma, Geomicrobiol J. 35, 511 (2018)

    Google Scholar 

  29. A.R. Baggio, M.S. Santos, F.H. Souza, R.B. Nunes, P.E.N. Souza, S.N. Báo, A.O.T. Patrocinio, D.W. Bahnemann, L.P. Silva, M.J.A. Sales, J. Phys. Chem. A 122, 6842 (2018)

    Google Scholar 

  30. M. Bruna, A.K. Ott, M. Ijäs, D. Yoon, U. Sassi, A.C. Ferrari, ACS Nano 8, 7432 (2014)

    Google Scholar 

  31. Y.-H. Hung, D. Dutta, C.-J. Tseng, J.-K. Chang, A.J. Bhattacharyya, C.-Y. Su, J. Phys. Chem. C 123, 22202 (2019)

    Google Scholar 

  32. M.M. Lucchese, F. Stavale, E.M. Ferreira, C. Vilani, M.V.O. de Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Carbon 48, 1592 (2010)

    Google Scholar 

  33. J. Geng, Y. Men, C. Liu, X. Ge, C. Yuan, RSC Adv. 11, 16592 (2021)

    ADS  Google Scholar 

  34. V.R. Moreira, Y.A.R. Lebron, M.M. da Silva, L.V.S. de Santos, R.S. Jacob, C.K.B. de Vasconcelos, M.M. Viana, Environ. Sci. Pollut. Res. 27, 34513 (2020)

    Google Scholar 

  35. B.D. Ossonon, D. Bélanger, RSC Adv. 7, 27224 (2017)

    ADS  Google Scholar 

  36. Z. Yang, T. Zhao, X. Huang, X. Chu, T. Tang, Y. Ju, Q. Wang, Y. Hou, S. Gao, Chem. Sci. 8, 473 (2017)

    Google Scholar 

  37. J. Gupta, A. Prakash, M.K. Jaiswal, A. Agarrwal, D. Bahadur, J. Magn. Magn. Mater. 448, 332 (2018)

    ADS  Google Scholar 

  38. Y. Liu, N. Tang, X. Wan, Q. Feng, M. Li, Q. Xu, F. Liu, Y. Du, Sci. Rep. 3, 1 (2013)

    Google Scholar 

  39. J.J. Prías-Barragán, R. González-Hernández, F.A. Hoyos-Ariza, J.G. Ramírez, M.R. Ibarra, P. Prieto, J. Magn. Magn. Mater. 541, 168506 (2022)

    Google Scholar 

  40. S. Zhu, J.A. Stroscio, T. Li, Phys. Rev. Lett. 115, 245501 (2015)

    ADS  Google Scholar 

  41. S. Qi, J. Jiang, X. Wang, W. Mi, Carbon 174, 540 (2021)

    Google Scholar 

  42. P. Hess, Nanoscale Horizons (2021)

  43. J.M. Cain, W. He, I. Maurin, M.W. Meisel, D.R. Talham, J. Appl. Phys. 129, 160903 (2021)

    ADS  Google Scholar 

  44. H. Huang, Z. Li, W. Wang, J. Appl. Phys. 112, 114332 (2012)

    ADS  Google Scholar 

  45. Z. You, J. Zhen, T. Hou, D. Zhang, W. Zhou, H. Lin, O. Isayev, S. Yershov, Y. Wu, K. Wu, J. Magn. Magn. Mater. 560, 169558 (2022)

    Google Scholar 

  46. F. López-Urías, A.D. Martínez-Iniesta, A. Morelos-Gómez, E. Muñoz-Sandoval, Mater. Chem. Phys. 265, 124450 (2021)

    Google Scholar 

  47. S.K. Vemuri, H. Chaliyawala, A. Ray, I. Mukhopadhyay, J. Mater. Sci. 57(23), 10714–10723 (2022)

    ADS  Google Scholar 

  48. E. El-Khawas, A. Azab, A. Mansour, Mater. Chem. Phys. 241, 122335 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DOI: conceptualization, methodology, investigation, formal analysis, data curation, software, initial manuscript draft. ELM: manuscript review and editing. CCA: manuscript review and editing. EMB: conceptualization and data validation, manuscript review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to David O. Idisi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests and have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idisi, D.O., Ahia, C.C., Meyer, E.L. et al. Effect of microstrain on the magnetic properties of reduced graphene oxide by Fe3O4 nanoparticles: insight from experimental and density functional theory. Appl. Phys. A 129, 227 (2023). https://doi.org/10.1007/s00339-023-06510-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06510-7

Keywords

Navigation