Skip to main content
Log in

Photoresponse application of the dip-coated Cu2ZnSnS4 thin film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Cu2ZnSnS4 (CZTS) thin films are prepared by dip-coating technique. The prepared thin films showed perfect stoichiometry and phase with a tetragonal unit cell. The scanning electron microscopy of the surface and electron diffraction showed the uniform spread of the film with the presence of fringes, respectively. The fringe width matches the inter-planner spacing of the CZTS (112) major plane. The thin film showed an optical bandgap of direct nature having a value of 1.5 eV. The analysis by Raman confirmed the CZTS phase of the prepared thin film. The CZTS thin film/Ag-paste/Cu-wire combination is studied for photoresponse for three monochromatic incident photon wavelengths. The evaluated photoresponse parameters stated the as-prepared CZTS thin film has the potential for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data generated during the current study are available from the corresponding author upon reasonable request.

References

  1. K.S. Gour, B. Bhattacharyya, O.P. Singh, A.K. Yadav, S. Husale, V.N. Singh, J. Alloys Compd. 735, 285 (2018)

    Google Scholar 

  2. T. Dong, J. Simões, Z. Yang, Adv. Mater. Interfaces 7, 1901657 (2020)

    Google Scholar 

  3. G. Yan, C. Zeng, Y. Yuan, G. Wang, G. Cen, L. Zeng, L. Zhang, Y. Fu, C. Zhao, R. Hong, W. Mai, A.C.S. Appl, Mater. Interfaces 11, 32097 (2019)

    Google Scholar 

  4. O.P. Singh, A. Sharma, K.S. Gour, S. Husale, V.N. Singh, Sol. Energy Mater. Sol. Cells 157, 28 (2016)

    Google Scholar 

  5. K.S. Gour, O.P. Singh, B. Bhattacharyya, R. Parmar, S. Husale, T.D. Senguttuvan, V.N. Singh, J. Alloys Compd. 694, 119 (2017)

    Google Scholar 

  6. K.S. Gour, V. Karade, A. Pandey, M. Kumar, B. Bhattacharyya, P. Babar, D.M. Lee, S. Husale, V.N. Singh, J.H. Kim, Sensors Actuators A Phys. 314, 112231 (2020)

    Google Scholar 

  7. S. Qiao, J. Liu, X. Niu, B. Liang, G. Fu, Z. Li, S. Wang, K. Ren, C. Pan, Adv. Funct. Mater. 28, 1707311 (2018)

    Google Scholar 

  8. Y. Yuan, L. Zhang, G. Yan, G. Cen, Y. Liu, L. Zeng, C. Zeng, C. Zhao, R. Hong, W. Mai, A.C.S. Appl, Mater. Interfaces 11, 20157 (2019)

    Google Scholar 

  9. P. Prabeesh, V.G. Sajeesh, I.P. Selvam, S.N. Potty, J. Mater. Sci. Mater. Electron. 32, 4146 (2021)

    Google Scholar 

  10. Z.O. Elhmaidi, E. Saucedo, M. Abd-Lefdil, M.A. El Khakani, J. Alloys Compd. 893, 162292 (2022)

    Google Scholar 

  11. A.B. Hirpara, S.H. Chaki, A.J. Khimani, R.M. Kannaujiya, M.P. Deshpande, J. Mater. Sci. Mater. Electron. 33, 20303 (2022)

    Google Scholar 

  12. C. Sabanhalli, K. Roy, M.P. Kumar, R. Mudike, P.D. Shivaramu, K.G.B. Kumar, N. Basavegowda, D. Rangappa, Ceram. Int. 48, 35860 (2022)

    Google Scholar 

  13. V. Mahalakshmi, D. Venugopal, K. Ramachandran, R. Ramesh, J. Mater. Sci. Mater. Electron. 33, 8493 (2021)

    Google Scholar 

  14. X. Huo, H. Shen, W. Song, L. Sun, J. Saddique, J. Yang, Mater. Sci. Semicond. Process. 136, 106159 (2021)

    Google Scholar 

  15. X. Zhou, X. Gu, Z. Chen, Y. Wu, W. Xu, J. Bao, Sensors Actuators B Chem. 329, 129117 (2021)

    Google Scholar 

  16. A. Hammoud, M. Souli, F. Kouki, L. Ajili, B. Bouricha, N. Kamoun, J. Mater. Sci. Mater. Electron. 33, 6926 (2022)

    Google Scholar 

  17. S. Chetana, N. Kuma, P. Choudhary, G. Amulya, A. Kumar, K.G.B. Kumar, D. Rangappa, Mater. Chem. Phys. 294, 126869 (2022)

    Google Scholar 

  18. H. Xu, R. Lang, C. Gao, W. Yu, W. Lu, S. Mohammadi, Surfaces and Interfaces 33, 102187 (2022)

    Google Scholar 

  19. Z. Syum, T. Billo, A. Sabbah, B. Venugopal, S.Y. Yu, F.Y. Fu, H.L. Wu, L.C. Chen, K.H. Chen, A.C.S. Sustain, Chem. Eng. 9, 8970 (2021)

    Google Scholar 

  20. Y. Wang, X. Fu, T. Wang, F. Li, D. Li, Y. Yang, X. Dong, Sensors Actuators B Chem. 348, 130683 (2021)

    Google Scholar 

  21. S.S. Patil, R.M. Mane, S.S. Mali, C.K. Hong, P.N. Bhosale, Sol. Energy 201, 102 (2020)

    ADS  Google Scholar 

  22. T. Gershon, B. Shin, N. Bojarczuk, T. Gokmen, S. Lu, S. Guha, J. Appl. Phys. 114, 154905 (2013)

    ADS  Google Scholar 

  23. Z.O. Elhmaidi, R. Pandiyan, M. Abd-Lefdil, E. Saucedo, M.A. El Khakani, Appl. Surf. Sci. 507, 145003 (2020)

    Google Scholar 

  24. K.V. Gunavathy, K. Tamilarasan, C. Rangasami, A.M.S. Arulanantham, Thin Solid Films 697, 137841 (2020)

    ADS  Google Scholar 

  25. B. Liu, J. Guo, R. Hao, L. Wang, K. Gu, S. Sun, A. Aierken, Sol. Energy 201, 219 (2020)

    ADS  Google Scholar 

  26. A. Krishnan, K.R. Ali, G. Vishnu, P. Kannan, Mater. Renew. Sustain Energy 8, 1 (2019)

    Google Scholar 

  27. T. Özdal, H. Kavak, Ceram. Int. 47, 24841 (2021)

    Google Scholar 

  28. S.A. Khalate, R.S. Kate, R.J. Deokate, Sol. Energy 169, 616 (2018)

    ADS  Google Scholar 

  29. R. Aruna-Devi, M. Latha, S. Velumani, J.Á. Chávez-Carvayar, Rare Met. 40, 2602 (2021)

    Google Scholar 

  30. A. Tumbul, F. Aslan, A. Goktas, M.Z. Zarbali, A. Kilic, Mater. Chem. Phys. 258, 123997 (2021)

    Google Scholar 

  31. J.P. Sawant, R.B. Kale, J. Solid State Electrochem. 24, 461 (2020)

    Google Scholar 

  32. V.V. Satale, V. Ganesh, S.V. Bhat, Energy Technol. 9, 1 (2021)

    Google Scholar 

  33. J.J. Chaudhari, U.S. Joshi, Appl. Phys. A Mater. Sci. Process. 124, 1 (2018)

    Google Scholar 

  34. S. Ahmadi, N. Khemiri, A. Cantarero, M. Kanzari, J. Alloys Compd. 925, 166520 (2022)

    Google Scholar 

  35. T. Özdal, T. Chtouki, H. Kavak, V. Figa, D. Guichaoua, H. Erguig, J. Mysliwiec, B. Sahraoui, J. Inorg. Organomet. Polym. Mater. 31, 89 (2021)

    Google Scholar 

  36. A.B. Hirpara, S.H. Chaki, A.J. Khimani, R.M. Kannaujiya, M.P. Deshpande, Int. J. Thermophys. 42, 22 (2021)

    ADS  Google Scholar 

  37. D. Dumcenco, Y.-S. Huang, Opt. Mater. (Amst). 35, 419 (2013)

    ADS  Google Scholar 

  38. A.B. Hirpara, S.H. Chaki, R.M. Kannaujiya, A.J. Khimani, Z.R. Parekh, Y.H. Vaidya, R.K. Giri, M.P. Deshpande, Appl. Surf. Sci. Adv. 12, 100338 (2022)

    Google Scholar 

  39. S.M. Chauhan, S.H. Chaki, M.P. Deshpande, J.P. Tailor, A.J. Khimani, Mater. Sci. Semicond. Process. 74, 329 (2018)

    Google Scholar 

  40. A.J. Khimani, S.H. Chaki, S.M.C.M.P. Deshpande, J. Mater. Sci. Mater. Electron. 30, 13118 (2019)

    Google Scholar 

  41. M.A. Shafi, L. Khan, S. Ullah, A. Bouich, H. Ullah, B. Mari, Micro and Nanostructures 164, 107185 (2022)

    Google Scholar 

  42. R.J. Deokate, R.S. Kate, S.C. Bulakhe, J. Mater. Sci. Mater. Electron. 30, 3530 (2019)

    Google Scholar 

  43. R.J. Deokate, H.S. Chavan, H. Im, A.I. Inamdar, Ceram. Int. 48, 795 (2022)

    Google Scholar 

  44. I.L.P. Raj, S. Valanarasu, K.H. Prasad, M.S. Revathy, N. Chidhambaram, V. Ganesh, H. Algarni, H.E. Ali, Sensors Actuators. A Phys. 315, 112306 (2020)

    Google Scholar 

  45. K.W. Böer, U.W. Pohl, in edited by K. W. Böer and U. W. Pohl (Springer International Publishing, Cham, 2018), pp. 1181–1205.

  46. A. Rasool, M.C. Santhosh Kumar, M.H. Mamat, C. Gopalakrishnan, R. Amiruddin, J. Mater. Sci. Mater. Electron. 31, 7100 (2020)

    Google Scholar 

  47. K. Patel, P. Chauhan, A.B. Patel, G.K. Solanki, K.D. Patel, V.M. Pathak, A.C.S. Appl, Nano Mater. 3, 11143 (2020)

    Google Scholar 

  48. M. Banavoth, S. Dias, S.B. Krupanidhi, AIP Adv. 3, 082132 (2013)

    ADS  Google Scholar 

  49. J. Li, J. Han, H. Li, X. Fan, K. Huang, Mater. Sci. Semicond. Process. 107, 104804 (2020)

    Google Scholar 

  50. I.L.P. Raj, S. Valanarasu, K. Hariprasad, J.S. Ponraj, N. Chidhambaram, V. Ganesh, H.E. Ali, Y. Khairy, Opt. Mater. (Amst). 109, 110396 (2020)

    Google Scholar 

Download references

Acknowledgements

One of the authors, ABH, is thankful to the Department of Science and Technology (DST), Technology Bhawan, New Mehrauli Road, New Delhi-110016 for the award of INSPIRE Fellowship (IF180246) to carry out this research work. All the authors are thankful to the Materials Research Centre, MNIT Jaipur, India for the XPS analysis of the sample.

Author information

Authors and Affiliations

Authors

Contributions

ABH participated in the conceptualization, material preparation, data collection, investigation, analysis, and writing of the original draft. SHC acquired resources and assisted in project administration, reviewing, and editing of the manuscript, and supervision. RMK participated in the investigation and methodology. MPD assisted in project administration.

Corresponding authors

Correspondence to Anilkumar B. Hirpara or Sunil H. Chaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirpara, A.B., Chaki, S.H., Kannaujiya, R.M. et al. Photoresponse application of the dip-coated Cu2ZnSnS4 thin film. Appl. Phys. A 129, 226 (2023). https://doi.org/10.1007/s00339-023-06507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06507-2

Keywords

Navigation