Skip to main content
Log in

Carbon nanoparticles as absorbers in PVC for laser ablation propulsion: size effects

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

During laser ablation a mechanical impulse is generated on the target material. This allows to generate thrust on far objects, becoming an attractive space propulsion technique for space debris removal and nanosatellite propulsion. Polymers showed promising results as fuel materials for laser ablation propulsion (LAP) for nanosatellites, and among the commercial ones poly(vinyl chloride) (PVC) gave the best performances. This polymer, however, is transparent for wavelengths\(>{200}\, \hbox {nm}\), so that strategies have been tried to increase its absorption and enable laser ablation, among which the loading of carbon nanoparticles (CNPs) as absorbers. Despite the growing number of reports, the role of CNPs size and concentration is still not clear. In this work, different sizes and number density of CNPs are employed as absorbers in order to investigate their role in the impulse generation process. Samples are characterized from the structural, optical and thermodynamical point of view, and laser generated impulse is measured for fluences \({<7}\,\hbox {J}/\hbox {cm}^{2}\) by using a specifically designed ballistic pendulum. Our results show that the main parameter is CNPs number density. For a fixed total mass concentration, a reduced CNP size increases optical absorption and lowers the fluence threshold of impulse generation (\(F_{\text {th}}\)) because of a better heat distribution in the sample. A lower limit was also found for \(F_{\text {th}}\) at high absorption. Additionally, a considerable enhancement in impulse generation was observed by confining laser ablation with a transparent PVC layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Phipps, M. Birkan, W. Bohn, H.-A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, J. Sinko, Review: Laser-ablation propulsion. J. Propuls. Power 26(4), 609–637 (2010). https://doi.org/10.2514/1.43733

    Article  Google Scholar 

  2. C.R. Phipps, in Laser ablation propulsion and its applications in space. by P.M. Ossi (ed) (Springer, Cham, 2018), pp.217–246. https://doi.org/10.1007/978-3-319-96845-2_8

  3. M. Shan, J. Guo, E. Gill, Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80, 18–32 (2016). https://doi.org/10.1016/j.paerosci.2015.11.001

    Article  Google Scholar 

  4. C.P. Mark, S. Kamath, Review of active space debris removal methods. Space Policy 47, 194–206 (2019). https://doi.org/10.1016/j.spacepol.2018.12.005

    Article  Google Scholar 

  5. J.D. Liddle, A.P. Holt, S.J. Jason, K.A. O’Donnell, E.J. Stevens, Space science with cubesats and nanosatellites. Nat. Astron. 4(11), 1026–1030 (2020)

    Article  ADS  Google Scholar 

  6. X.-T. Zhao, F. Tang, B. Han, X.-W. Ni, The influence of laser ablation plume at different laser incidence angle on the impulse coupling coefficient with metal target. J. Appl. Phys. 120(21), 213103 (2016). https://doi.org/10.1063/1.4971247

    Article  ADS  Google Scholar 

  7. B. Wang, Laser ablation impulse generated by irradiating aluminum target with nanosecond laser pulses at normal and oblique incidence. Appl. Phys. Lett. 110(1), 014101 (2017). https://doi.org/10.1063/1.4973464

    Article  ADS  Google Scholar 

  8. C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, T. Lippert, Laser impulse coupling at 130fs. Appl. Surf. Sci. 252(13), 4838–4844 (2006). https://doi.org/10.1016/j.apsusc.2005.07.079. (Proceedings of the European Materials Research society 2005 - Symposium-J: Advances in Laser and Lamp Processing of Functional Materials)

    Article  ADS  Google Scholar 

  9. C.R. Phipps, M. Boustie, J.M. Chevalier, S. Baton, E. Brambrink, L. Berthe, M. Schneider, L. Videau, S.A.E. Boyer, S. Scharring, Laser impulse coupling measurements at 400 fs and 80 ps using the luli facility at 1057 nm wavelength. J. Appl. Phys. 122(19), 193103 (2017). https://doi.org/10.1063/1.4997196

    Article  ADS  Google Scholar 

  10. C. Phipps, J. Luke, Diode laser-driven microthrusters: a new departure for micropropulsion. AIAA J. 40(2), 310–318 (2002). https://doi.org/10.2514/2.1647

    Article  ADS  Google Scholar 

  11. L. Urech, T. Lippert, C.R. Phipps, A. Wokaun, Polymer ablation: from fundamentals of polymer design to laser plasma thruster. Appl. Surf. Sci. 253(15), 6409–6415 (2007). https://doi.org/10.1016/j.apsusc.2007.01.026. (Proceedings of the Fifth International Conference on Photo-Excited Processes and Applications)

    Article  ADS  Google Scholar 

  12. P. Battocchio, J. Terragni, V. Cristino, N. Bazzanella, R. Checchetto, M. Orlandi, S. Caramori, A. Miotello, Poly(vinyl chloride) coupling with UV laser radiation: comparison between polymer absorbers and nanoparticles to increase efficiency for laser ablation propulsion. J. Phys. Chem. C 125(51), 28088–28099 (2021). https://doi.org/10.1021/acs.jpcc.1c08175

    Article  Google Scholar 

  13. M.M.S. Gualini, S.A. Khan, S. Iqbal, Comparative study of plastics as propellants for laser ablation plasma thrusters. J. Propuls. Power 25(5), 1138–1140 (2009). https://doi.org/10.2514/1.40318

    Article  Google Scholar 

  14. D.K. Wang, Y.J. Hong, Interaction of high power laser with carbon doped PVC. Appl. Mech. Mech. Eng. III 249, 983–986 (2013). https://doi.org/10.4028/www.scientific.net/AMM.249-250.983

    Article  Google Scholar 

  15. H. Koizumi, T. Inoue, K. Kojima, K. Mori, K. Komurasaki, Y. Arakawa, Microthruster experiment using a diode laser (2003). https://doi.org/10.2514/6.2003-4568

  16. X. Wen, D.E. Hare, D.D. Dlott, Laser polymer ablation threshold lowered by nanometer hot spots. Appl. Phys. Lett. 64(2), 184–186 (1994). https://doi.org/10.1063/1.111526

    Article  ADS  Google Scholar 

  17. R.W. Conner, D.D. Dlott, Time-resolved spectroscopy of initiation and ignition of flash-heated nanoparticle energetic materials. J. Phys. Chem. C 116(28), 14737–14747 (2012). https://doi.org/10.1021/jp303077f

    Article  Google Scholar 

  18. G. Ischia, M. Cutillo, G. Guella, N. Bazzanella, M. Cazzanelli, M. Orlandi, A. Miotello, L. Fiori, Hydrothermal carbonization of glucose: secondary char properties, reaction pathways, and kinetics. Chem. Eng. J. 449, 137827 (2022). https://doi.org/10.1016/j.cej.2022.137827

    Article  Google Scholar 

  19. A.D. Goswami, D.H. Trivedi, N.L. Jadhav, D.V. Pinjari, Sustainable and green synthesis of carbon nanomaterials: a review. J. Environ. Chem. Eng. 9(5), 106118 (2021). https://doi.org/10.1016/j.jece.2021.106118

    Article  Google Scholar 

  20. Z. Wang, D. Shen, C. Wu, S. Gu, State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem. 20(22), 5031–5057 (2018)

    Article  Google Scholar 

  21. P. Battocchio, J. Terragni, N. Bazzanella, C. Cestari, M. Orlandi, W.J. Burger, R. Battiston, A. Miotello, Ballistic measurements of laser ablation generated impulse. Meas. Sci. Technol. 32(1), 015901 (2021). https://doi.org/10.1088/1361-6501/abace6

    Article  ADS  Google Scholar 

  22. J. Terragni, P. Battocchio, N. Bazzanella, M. Orlandi, W.J. Burger, R. Battiston, A. Miotello, Evaluation of the role of beam homogeneity on the mechanical coupling of laser-ablation-generated impulse. Appl. Opt. 60(31), 37–44 (2021). https://doi.org/10.1364/AO.432991

    Article  Google Scholar 

  23. J.-P. Song, K.-Y. Tian, L.-X. Ma, W. Li, S.-C. Yao, The effect of carbon black morphology to the thermal conductivity of natural rubber composites. Int. J. Heat Mass Transf. 137, 184–191 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.078

    Article  Google Scholar 

  24. Electromagnetic Theory, pp. 12–56. Wiley (1998). Chap. 2. https://doi.org/10.1002/9783527618156.ch2

  25. X. Zhang, J. Qiu, X. Li, J. Zhao, L. Liu, Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl. Opt. 59(8), 2337–2344 (2020). https://doi.org/10.1364/AO.383831

    Article  ADS  Google Scholar 

  26. W. Mäntele, E. Deniz, Uv–vis absorption spectroscopy: Lambert–Beer reloaded. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173, 965–968 (2017). https://doi.org/10.1016/j.saa.2016.09.037

    Article  ADS  Google Scholar 

  27. H. Koizumi, T. Inoue, K. Komurasaki, Y. Arakawa, Fundamental characteristics of a laser ablation microthruster. Trans. Japan Soc. Aeronaut. Space Sci. 50(167), 70–76 (2007). https://doi.org/10.2322/tjsass.50.70

    Article  ADS  Google Scholar 

  28. Z. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, Y. Li, Enhancement of coupling coefficient of laser plasma propulsion by water confinement. Appl. Phys. A 85(4), 441–443 (2006)

    Article  ADS  Google Scholar 

  29. M. Senegačnik, M. Jezeršek, P. Gregorčič, Propulsion effects after laser ablation in water, confined by different geometries. Appl. Phys. A 126(2), 1–12 (2020)

    Article  Google Scholar 

  30. J.E. Sinko, N.B. Dhote, A.V. Pakhomov, Laser propulsion with liquid propellants part II: thin films. AIP Conf. Proc. 997(1), 209–221 (2008). https://doi.org/10.1063/1.2931892

    Article  ADS  Google Scholar 

  31. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68(2), 775–784 (1990). https://doi.org/10.1063/1.346783

    Article  ADS  Google Scholar 

  32. J. Yu, L. Sun, C. Ma, Y. Qiao, H. Yao, Thermal degradation of PVC: a review. Waste Manag. 48, 300–314 (2016). https://doi.org/10.1016/j.wasman.2015.11.041

    Article  Google Scholar 

  33. A. Jiménez, V. Berenguer, J. López, A. Sánchez, Thermal degradation study of poly(vinyl chloride): kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 50(9), 1565–1573 (1993). https://doi.org/10.1002/app.1993.070500910

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Battocchio.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battocchio, P., Bazzanella, N., Orlandi, M. et al. Carbon nanoparticles as absorbers in PVC for laser ablation propulsion: size effects. Appl. Phys. A 129, 220 (2023). https://doi.org/10.1007/s00339-023-06502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06502-7

Keywords

Navigation