Skip to main content
Log in

Low-loss and ultra-low sintering temperature ceramics of AgCa1−xMgxVO4 (x = 0–0.09) for microwave applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pure and Mg-substituted AgCaVO4 compounds were explored using the conventional solid-state sintering method and their microwave dielectric properties were investigated. The XRD patterns indicate all samples belong to an orthorhombic structure with a space group of Pmna. The pure AgCaVO4 ceramic gives the dielectric properties: εr of 11.7, Q × f of 15,000 GHz, and τf of38 ppm/°C at 530 °C. The value of τf is correlated with the bond valence. In a limited range (x = 0.03–0.05), a small amount of Mg substitution can not only reduce the dielectric loss, but also increase the dielectric constant of the AgCa1−xMgxVO4 specimen. AgCa0.97Mg0.03VO4 ceramic sintered at 530 °C exhibits optimum properties of εr = 12, Q × f = 23,000 GHz and τf = –35 ppm/°C at microwave frequencies. The ceramic also shows good chemical compatibility with aluminum, providing a promising candidate for ULTCC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Pan, W. Guan, Effect of sulfur concentration on structural, elastic and electronic properties of molybdenum sulfides from first-principles. Int. J. Hydrogen Energy 41(26), 11033–11041 (2016)

    Google Scholar 

  2. E. Yu, Y. Pan, Catalytic properties of borophene/MoS 2 heterojunctions for hydrogen evolution reaction under different stacking conditions. J. Mater. Chem. A 10(46), 24866–24876 (2022)

    Google Scholar 

  3. E. Yu, Y. Pan, Exploring the hydrogen evolution catalytic activity of the orthorhombic and hexagonal borophene as the hydrogen storage material. Electrochim. Acta 435, 141391 (2022)

    Google Scholar 

  4. S. Chen, Y. Pan, Mechanism of interlayer spacing on catalytic properties of MoS2 from ab-initio calculation. Appl. Surf. Sci. 599, 154041 (2022)

    Google Scholar 

  5. Y. Pan, E. Yu, Theoretical prediction of structure, electronic and optical properties of VH2 hydrogen storage material. Int. J. Hydrogen Energy 47(64), 27608–27616 (2022)

    Google Scholar 

  6. K.O. Yoro, M.O. Daramola, CO2 emission sources, greenhouse gases, and the global warming effect, Advances in carbon capture (Elsevier, Amsterdam, 2020), pp.3–28

    Google Scholar 

  7. D. Liu, X. Guo, B. Xiao, What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Sci. Total Environ. 661, 750–766 (2019)

    ADS  Google Scholar 

  8. R. Harmsen, W. Graus, How much CO2 emissions do we reduce by saving electricity? A focus on methods. Energy Policy 60, 803–812 (2013)

    Google Scholar 

  9. S. Solomon, J.S. Daniel, T.J. Sanford, D.M. Murphy, G.-K. Plattner, R. Knutti, P. Friedlingstein, Persistence of climate changes due to a range of greenhouse gases. Proc. Natl. Acad. Sci. 107(43), 18354–18359 (2010)

    ADS  Google Scholar 

  10. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–90 (2008)

    Google Scholar 

  11. G. Yao, Y. Li, J. Yan, J. Tan, C. Pei, Y. Jia, L. Li, P. Liu, Structure and microwave dielectric properties of NaSr4V5O17 ceramics for LTCC applications. Ceram. Int. 47(12), 17147–17152 (2021)

    Google Scholar 

  12. H. Hu, Y. Wang, C. Cai, P. Zhang, X. Chen, R. Xiang, H. Li, BaMnV2O7: a novel microwave dielectric ceramic for LTCC applications. Ceram. Int. 47(22), 31506–31511 (2021)

    Google Scholar 

  13. Y. Zhao, Z. Qing, J. Cheng, J. Wang, X. Zhou, H. Zou, H. Li, Y. Li, Y. Xue, Sintering and microwave dielectric properties of Ba1− xCaxNi2V2O8 ceramics for LTCC applications. J. Mater. Sci. Mater. Electron. 17, 1–7 (2022)

    Google Scholar 

  14. J. Dhanya, E.K. Suresh, R. Naveenraj, R. Ratheesh, Synthesis and characterization of Na5M(MoO4)4 (M= Y, Yb) microwave ceramics for ULTCC applications. Ceram. Int. 44(6), 6699–6704 (2018)

    Google Scholar 

  15. R. Naveenraj, E.K. Suresh, J. Dhanya, R. Ratheesh, Preparation and microwave dielectric properties of Ba3A(V2O7)2 (A= Mg, Zn) ceramics for ULTCC applications. Eur. J. Inorg. Chem. 2019(7), 949–955 (2019)

    Google Scholar 

  16. G. Yao, Z. Ren, P. Liu, Effect of Ca substitution on microwave dielectric properties of BaV2O6 ceramics. J. Electroceram. 40(2), 144–149 (2018)

    Google Scholar 

  17. M. Ma, K. Song, Y. Ji, F. Hussain, A. Khesro, M. Mao, L. Xue, P. Xu, B. Liu, Z. Lu, 5G microstrip patch antenna and microwave dielectric properties of cold sintered LiWVO6–K2MoO4 composite ceramics. Ceram. Int. 47(13), 19241–19246 (2021)

    Google Scholar 

  18. A. Goulas, G. Chi-Tangyie, D. Wang, S. Zhang, A. Ketharam, B. Vaidhyanathan, I.M. Reaney, D.A. Cadman, W.G. Whittow, J.Y.C. Vardaxoglou, Additively manufactured ultra-low sintering temperature, low loss Ag2Mo2O7 ceramic substrates. J. Eur. Ceram. Soc. 41(1), 394–401 (2021)

    Google Scholar 

  19. C. Pei, Y. Li, J. Tan, G. Yao, Y. Jia, W. Liu, P. Liu, H. Zhang, Temperature stable (1–x) NaCa4V5O17-xBaV2O6 microwave dielectric ceramics for ULTCC applications. Ceram. Int. 46(17), 27579–27583 (2020)

    Google Scholar 

  20. I. Hameed, L. Li, X.Q. Liu, X.M. Chen, Ultra low loss (Mg1−xCax)2SiO4 dielectric ceramics (x= 0 to 0.15) for millimeter wave applications. J. Am. Ceram. Soc. 105(3), 2010–2019 (2022)

    Google Scholar 

  21. B. Masin, K. Ashok, S. Vishnu, H. Sreemoolanadhan, K. Prabhakaran, Temperature-compensated BaV2O6-Ba2V2O7 ceramic composite for ULTCC applications. Ceram. Int. 48, 22479–22485 (2022)

    Google Scholar 

  22. Y. Pan, Effects of Cu, Ag and Au on electronic and optical properties of α-Ga2O3 oxide according to first-principles calculations. J. Phys. Chem. Solids 174, 111152 (2023)

    Google Scholar 

  23. Y. Pan, The influence of Ag and Cu on the electronic and optical properties of ZrO from first-principles calculations. Mater. Sci. Semicond. Process. 135, 106084 (2021)

    Google Scholar 

  24. Y. Pan, First-principles investigation of structural stability, electronic and optical properties of suboxide (Zr3O). Mater. Sci. Eng. B 281, 115746 (2022)

    Google Scholar 

  25. S.-Z. Hao, D. Zhou, L.-X. Pang, M.-Z. Dang, S.-K. Sun, T. Zhou, S. Trukhanov, A. Trukhanov, A.S.B. Sombra, Q. Li, Ultra-low temperature co-fired ceramics with adjustable microwave dielectric properties in the NaO–Bi2O3–MoO3 ternary system: a comprehensive study. J. Mater. Chem. C 10(6), 2008–2016 (2022)

    Google Scholar 

  26. W. Bian, G. Zhou, Y. Dong, X. Lu, H. Zhu, S. Ta, L. Wang, Q. Zhang, Structural analysis and microwave dielectric properties of a novel Li2Mg2Mo3O12 ceramic with ultra-low sintering temperature. Ceram. Int. 47(5), 7081–7087 (2021)

    Google Scholar 

  27. D. Kim, K. Lee, Fabrication of a novel ultra low temperature co-fired ceramic (ULTCC) using BaV2O6 and BaWO4. J. Microelectron. Packag. Soc. 28(4), 11–18 (2021)

    MathSciNet  Google Scholar 

  28. C.-F. Tseng, C.-H. Chiang, P.-H. Chen, S.-Y. Chang, T.-L. Chuang, Ultra-low temperature fired glass-free Li2O–MO–WO3 (M= Co, Ni, Ca, Ba) microwave dielectric ceramics. J. Mater. Sci. Mater. Electron. 29(17), 14835–14841 (2018)

    Google Scholar 

  29. Y.-T. Huang, T.-H. Hsu, C.-L. Huang, Low-loss and ultra-low temperature sintering microwave dielectrics of pure and Ag-modified K2Mg2(MoO4)3 ceramics. J. Eur. Ceram. Soc. 42, 7004–7009 (2022)

    Google Scholar 

  30. A. Pirvaram, E. Taheri-Nassaj, H.T. Armaki, K.X. Song, H.B. Bafrooei, Effects of Mg2+ substitution on the structure, microstructure, and microwave dielectric properties of CaV2O6 ceramic. J. Electron. Mater. 51(4), 1498–1504 (2022)

    ADS  Google Scholar 

  31. M.T. Sebastian, H. Wang, H. Jantunen, Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr. Opin. Solid State Mater. Sci. 20(3), 151–170 (2016)

    ADS  Google Scholar 

  32. W.-B. Li, H.-H. Xi, D. Zhou, Microwave dielectric properties of LiMVO4 (M= Mg, Zn) ceramics with low sintering temperatures. Ceram. Int. 41(7), 9063–9068 (2015)

    Google Scholar 

  33. R. Umemura, H. Ogawa, H. Ohsato, A. Kan, A. Yokoi, Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic. J. Eur. Ceram. Soc. 25(12), 2865–2870 (2005)

    Google Scholar 

  34. Y. Wang, R. Zuo, A novel low-temperature fired microwave dielectric ceramic BaMg2V2O8 with ultra-low loss. J. Eur. Ceram. Soc. 36(1), 247–251 (2016)

    Google Scholar 

  35. J. Chen, C. Li, H. Xiang, Y. Tang, L. Fang, SrV2O6: An ultralow-firing microwave dielectric ceramic for LTCC applications. Mater. Res. Bull. 100, 377–381 (2018)

    Google Scholar 

  36. H. Xiang, C. Li, Y. Tang, L. Fang, Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6(M= Mo, W) and their chemical compatibility with metal electrodes. J. Eur. Ceram. Soc. 37(13), 3959–3963 (2017)

    Google Scholar 

  37. X. Chen, H. Li, P. Zhang, H. Hu, Y. Tao, G. Li, SrZnV2O7: a low-firing microwave dielectric ceramic with high-quality factor. J. Am. Ceram. Soc. 104(10), 5110–5119 (2021)

    Google Scholar 

  38. C.-L. Huang, T.-H. Hsu, Ultra-low temperature sintering and temperature stable microwave dielectrics of phase pure AgMgVO4 ceramics. J. Eur. Ceram. Soc. 42(9), 3892–3897 (2022)

    Google Scholar 

  39. C. Li, C. Yin, J. Khaliq, L. Liu, Ultralow-temperature synthesis and densification of Ag2CaV4O12 with improved microwave dielectric performances. ACS Sustain. Chem. Eng. 9(43), 14461–14469 (2021)

    Google Scholar 

  40. D. Zhou, W.B. Li, L.X. Pang, J. Guo, Z.M. Qi, T. Shao, Z.X. Yue, X. Yao, Sintering behavior and dielectric properties of ultra-low temperature fired silver molybdate ceramics. J. Am. Ceram. Soc. 97(11), 3597–3601 (2014)

    Google Scholar 

  41. T.-H. Hsu, C.-L. Huang, Low-loss microwave dielectric of novel Li1–2xMxVO3 (M = Mg, Zn)(x = 0–0.09) ceramics for ULTCC applications. J. Eur. Ceram. Soc. 41(12), 5918–5923 (2021)

    Google Scholar 

  42. T.-H. Hsu, C.-L. Huang, Low-loss microwave dielectrics of Li2(1–x)MxWO4 (M= Mg, Zn; x= 0.01–0.09) for ULTCC applications. Mater. Sci. Semicond. Process. 158, 107355 (2023)

    Google Scholar 

  43. B. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. 8(4), 402–410 (1960)

    ADS  Google Scholar 

  44. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microw. Theory Tech. 18(8), 476–485 (1970)

    ADS  Google Scholar 

  45. R. Yousefi, A.K. Zak, F. Jamali-Sheini, Growth, X-ray peak broadening studies, and optical properties of Mg-doped ZnO nanoparticles. Mater. Sci. Semicond. Process. 16(3), 771–777 (2013)

    Google Scholar 

  46. T. Hanai, Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions. Kolloid-Zeitschrift 171(1), 23–31 (1960)

    Google Scholar 

  47. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    ADS  MathSciNet  Google Scholar 

  48. E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4(A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc. 30(7), 1731–1736 (2010)

    Google Scholar 

  49. L. Glasser, H.D.B. Jenkins, Lattice energies and unit cell volumes of complex ionic solids. J. Am. Chem. Soc. 122(4), 632–638 (2000)

    Google Scholar 

  50. N. Brese, M. O’keeffe, Bond-valence parameters for solids. Acta Crystallogr. Sect. B Struct. Sci. 47(2), 192–197 (1991)

    Google Scholar 

  51. H.S. Park, K.H. Yoon, E.S. Kim, Effect of bond valence on microwave dielectric properties of complex perovskite ceramics. Mater. Chem. Phys. 79(2–3), 181–183 (2003)

    Google Scholar 

  52. G.Q. Zhang, J. Guo, H. Wang, Ultra-low temperature sintering microwave dielectric ceramics based on Ag2O–MoO3 binary system. J. Am. Ceram. Soc. 100(6), 2604–2611 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was financially sponsored by the National Science and Technology Council of Taiwan under the projects MOST 110-2221-E-006-032-MY2 and MOST 111-2221-E-006-164-MY2. The authors would like to thank Ms. Hui–Jung Shih with the Instrument Center of National Cheng Kung University for supporting the use of high-resolution SEM (Hitachi SU8000). The authors also gratefully acknowledge the use of D8 Discover equipment belonging to the Instrument Center of National Cheng Kung University.

Author information

Authors and Affiliations

Authors

Contributions

Y-SL: conceptualization, methodology, investigation. I-CL: validation, data curation, investigation. T-HH: validation, data curation, investigation. C-LH: writing—original draft, supervision.

Corresponding author

Correspondence to Cheng-Liang Huang.

Ethics declarations

Conflicts of interest

There is no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2563 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YS., Ling, IC., Hsu, TH. et al. Low-loss and ultra-low sintering temperature ceramics of AgCa1−xMgxVO4 (x = 0–0.09) for microwave applications. Appl. Phys. A 129, 211 (2023). https://doi.org/10.1007/s00339-023-06501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06501-8

Keywords

Navigation