Skip to main content
Log in

Investigation of structural, optical and photoluminescence properties of the sol–gel synthesized powder ZnS nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc sulphide (ZnS) nanoparticles have been synthesized by using chemical route especially by sol–gel technique and are calcined at different temperatures at 150 °C, 200 °C and 250 °C. The calcined nanoparticles have been analyzed by several analytical and spectroscopic techniques such as, X-ray diffraction, transmission electron microscopy, optical absorption spectroscopy, Fourier-transform infrared spectroscopy and photoluminescence spectroscopy. The crystallite sizes of the nanoparticles in the range of 4–8 nm have been obtained from X-ray diffraction analysis. These are also justified by the transmission electron microscopic analysis, and supported by Williamson–Hall (W–H) analysis. From W–H analysis, it is found that the lattice strain is inversely proportional to particle sizes which are increased with calcined temperatures. The optical absorption study revealed that the value of optical band gap has been found to be in the range 3.76–3.13 eV. Photoluminescence spectra revealed that there might have zinc and sulphur vacancies related with green emission spectra around 550 nm wavelength. The results justified the possibility of tailoring the characteristic of zinc sulphide nanoparticles for various technological aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.B. Tan, N. Huang, Y. Zhang, J. Colloid Interface Sci. 310, 464 (2007)

    ADS  Google Scholar 

  2. A. Das, A.C. Mandal, S. Roy, P.M.G. Nambissan, J. Nanosci. Nanotechnol. 16, 4153 (2016)

    Google Scholar 

  3. X. Fang, Y. Bando, U.K. Gautam, T. Zhai, H. Zeng, X. Xu, M. Liao, D. Golberg, Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009)

    ADS  Google Scholar 

  4. S.S. Kumar, M.A. Khadar, S.K. Dhara, T.R. Ravindran, K.G.M. Nair, Nucl. Instrum. Methods Phys. Res. Sect. B 251, 435 (2006)

    ADS  Google Scholar 

  5. Z. Deng, J. Qi, Y. Zhang, Q. Liao, Y. Huang, Nanotechnology 18, 475603 (2007)

    ADS  Google Scholar 

  6. Y. Li, X. He, M. Cao, Mater. Res. Bull. 43, 3100 (2008)

    Google Scholar 

  7. S. Suganya, M. Jothibas, A. Muthuvel, J. Nanosci. Technol. 5, 787 (2019)

    Google Scholar 

  8. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, Prog. Mater. Sci. 56, 175 (2011)

    Google Scholar 

  9. C.S. Pathak, M.K. Mandal, V. Agarwala, Superlattices Microstruct. 58, 135 (2013)

    ADS  Google Scholar 

  10. P. Iranmanesh, S. Saeednia, M. Nourzpoor, Chin. Phys. B 24, 046104 (2015)

    ADS  Google Scholar 

  11. J.M. Hwang, M.O. Oh, I. Kim, J.K. Lee, C.S. Ha, Curr. Appl. Phys. 5, 31–34 (2005)

    ADS  Google Scholar 

  12. T. Yamamoto, S. Kishimoto, S. Iida, Phys. B Condens. Matter 308, 916 (2001)

    ADS  Google Scholar 

  13. X. Fang, Y. Bando, M. Liao, U.K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, D. Golberg, Adv. Mater. 21, 2034–2039 (2009)

    Google Scholar 

  14. X. Xu, S. Li, J. Chen, S. Cai, Z. Long, X. Fang, Adv. Funct. Mater. 28, 1802029 (2018)

    Google Scholar 

  15. H. Liu, L. Hu, K. Watanabe, X. Hu, B. Dierre, B. Kim, T. Sekiguchi, X. Fang, Adv. Funct. Mater. 23, 3701–3709 (2013)

    Google Scholar 

  16. A.K. Kole, P. Kumbhakar, Results Phys. 2, 150 (2012)

    ADS  Google Scholar 

  17. H. Minti, M. Eyal, R. Reisfeld, G. Berkovic, Chem. Phys. Lett. 183, 277 (1991)

    ADS  Google Scholar 

  18. M. Guglielmi, A. Martucci, E. Menegazzo, G.C. Righini, S. Pelli, J. Fick, G. Vitrant, J. Sol-Gel Sci. Technol. 8, 1017 (1997)

    Google Scholar 

  19. A.K. Atta, P.K. Biswas, D. Ganguli, Mater. Lett. 15, 99 (1992)

    Google Scholar 

  20. L. Kashinath, K. Namratha, S. Srikantaswamy, A. Vinu, K. Byrappa, New J. Chem. 41, 1723 (2017)

    Google Scholar 

  21. B. Bhattacharjee, S.K. Bera, D. Ganguli, S. Chaudhuri, A.K. Pal, Eur. Phys. J. B 31, 3 (2003)

    ADS  Google Scholar 

  22. H. Yang, C. Huang, X. Su, J. Alloys Compd. 402, 274 (2005)

    Google Scholar 

  23. A. Tiwari, S.A. Khan, R.S. Kher, Adv. Appl. Sci. Res. 2, 105 (2011)

    Google Scholar 

  24. G.H. Yue, P.X. Yan, D. Yan, X.Y. Fan, M.X. Wang, D.M. Qu, J.Z. Liu, Appl. Phys. A 84, 409 (2006)

    ADS  Google Scholar 

  25. T. Tsuzuki, P.G. McCormick, Nanostruct. Mater. 12, 75 (1999)

    Google Scholar 

  26. S. Hamaguchi, S. Ishizaki, M. Kobayashi, J. Korean Phys. Soc. 53, 3029 (2008)

    ADS  Google Scholar 

  27. S.I. Ali, D. Dutta, A. Das, S. Mandal, A.C. Mandal, J. Lumin. 253, 119465 (2023)

    Google Scholar 

  28. P.V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, R.E. Kroon, O.M. Ntwaeaborwa, Phys. B 507, 13–20 (2017)

    ADS  Google Scholar 

  29. A. Goktas, F. Aslan, E. Yasar, I.H. Mutlu, J. Mater. Sci. Mater. Electron. 23, 1361–1366 (2012)

    Google Scholar 

  30. M. Nikzad, M.R. Khanlary, S. Rafiee, Appl. Phys. A 125, 507 (2019)

    ADS  Google Scholar 

  31. A. Al-Zahra, A.K. Al-Sammarraie, Chem. Methodol. 6, 67–73 (2022)

    Google Scholar 

  32. T.T.Q. Hoa, T.D. Canh, N.N. Long, J. Phys. Conf. Ser. 187, 012081 (2009)

    Google Scholar 

  33. N. Dengo, A. Vittadini, M.M. Natile, S. Gross, J. Phys. Chem. C 124, 7777–7789 (2020)

    Google Scholar 

  34. Y. Li et al., Green phosphorescence of zinc sulfide optical ceramics. Opt. Mater. Express 46, 1140–1150 (2014)

    ADS  Google Scholar 

  35. G. Mahesh, M. Venkatachalam, M. Saroja, M. Balachander, Int. J. Res. Appl. Sci. Eng. Technol. 5, 2321 (2017)

    Google Scholar 

  36. J. Osuntokun, P.A. Ajibade, Phys. B Condens. Matter 496, 106–112 (2016)

    ADS  Google Scholar 

  37. R. John, S. Florence, Chalcogenide Lett. 6, 535–539 (2009)

    Google Scholar 

  38. A. Das, A.C. Mandal, S. Roy, P. Prashanth, S.I. Ahamed, S. Kar, M.S. Prasad, P.M.G. Nambissan, Phys. E 83, 389 (2016)

    Google Scholar 

  39. A. Das, A.C. Mandal, S. Roy, P.M.G. Nambissan, J. Exp. Nanosci. 10, 622 (2015)

    Google Scholar 

  40. R.D.K. Misra, S. Gubbala, A. Kale, W.F. JrEgelhoff, Mater. Sci. Eng. B 111, 164 (2004)

    Google Scholar 

  41. M.M.H. Farooki, R.K. Srivastava, Mater. Sci. Semicond. Proc. 20, 61 (2014)

    Google Scholar 

  42. K.P. Tiwary, F. Ali, S.K. Choubey, R.K. Misra, K. Sharma, Optik 227, 166045 (2021)

    ADS  Google Scholar 

  43. B. Poornaprakash, P.T. Poojitha, U. Chalapathi, S.H. Park, Mater. Lett. 181, 227 (2016)

    Google Scholar 

  44. J.S. Shah, Thermal lattice expansion of various types of solids. Doctoral Dissertations, 2312 (1971).

  45. V. Kumar, K. Singh, A. Kumar, M. Kumar, K. Singh, A. Vij, A. Thakur, Mater. Res. Bull. 85, 202 (2017)

    Google Scholar 

  46. S. Chattopadhyay, A. Kumawat, K.P. Misra, N. Halder, A. Bandyopadhyay, A. Antony, A. Rao, P. Poornesh, J. Jedryka, K. Ozga, B. Kucharska, R.D.K. Misra, Mater. Sci. Eng. B 266, 115041 (2021)

    Google Scholar 

  47. K.P. Misra, A. Kumawat, A. Shahee, S. Chattopadhyay, Mater. Technol. 36, 529–540 (2021)

    ADS  Google Scholar 

  48. A. Das, A.C. Mandal, S. Roy, P.M.G. Nambissan, AIP Adv. 8, 095013 (2018)

    ADS  Google Scholar 

  49. N. Jayaprakash, R. Suresh, S. Rajalakshmi, S. Raja, E. Sundaravadivel, M. Gayathri, M. Sridharan, Mater. Technol. (2019). https://doi.org/10.1080/10667857.2019.1659533

    Article  Google Scholar 

  50. T. Tsuruoka, C.H. Liang, K. Terabe, T. Hasegawa, Appl. Phys. Lett. 92, 091908 (2008)

    ADS  Google Scholar 

  51. R. John, S.S. Florence, Chalcogenide Lett. 7, 269 (2010)

    Google Scholar 

  52. O.P. Chimankar, N.N. Padole, N.R. Pawar, P.G. Agone, I. J. S. R., International Symposium on Ultrasonics-2015, 22–24 January 2015 (2013)

  53. U. Godavarti, V. Mote, M.P. Dasari, Mater. Today Proc. 3, 3892 (2016)

    Google Scholar 

  54. E. Shahriari, Z.M. Farsani, M.G. Varnamkhasti, R. Zamiri, Quantum Electron. 49, 1 (2017)

    Google Scholar 

  55. M. Moussaoui, R. Saoudi, A.V. Tishchenko, F. Chassagneux, Electromagn. Light Scatt. 7, 178 (2010)

    ADS  Google Scholar 

  56. A. Sharma, R.K. Khangarot, K.P. Misra, R.D.K. Misra, S. Chattopadhyay, P.D. Babu, N. Halder, Phys. Scr. 96, 075803 (2021)

    ADS  Google Scholar 

  57. K. Gupta, J. Kumar, R.P. Singh, A. Pandey, P. Rai, Mater. Technol. 34, 765–775 (2019)

    ADS  Google Scholar 

  58. X. Fang, Y. Bando, C. Ye, D. Golberg, J. Phys. Chem. C 111, 8469–8474 (2007)

    Google Scholar 

  59. S.I. Ali, A. Das, A. Agrawal, S. Mukherjee, M. Ahmed, P.M.G. Nambissan, S. Mandal, A.C. Mandal, Chin. Phys. B 30, 026103 (2021)

    ADS  Google Scholar 

  60. S.I. Ali, A. Das, D. Dutta, N. Mahata, S. Mandal, A.C. Mandal, J. Sol-Gel Sci. Technol. 100, 89 (2021)

    Google Scholar 

  61. S. Das, T. Ghosal, P.M.G. Nambissan, Phys. Status Solidi C 6, 2569 (2009)

    ADS  Google Scholar 

  62. G. Nabiyouni, R. Sahraei, M. Toghiany, M. Majiesara, K. Hadayati, Rev. Adv. Mater. Sci. 27, 62 (2011)

    Google Scholar 

  63. P.E. Agbo, P. Anwofe, L.O. Odo, Chalcogenide Lett. 14, 357 (2017)

    Google Scholar 

  64. R. Tamrakar, M. Ramrakhiani, B.P. Chandra, Open Nanosci. J. 2, 12–16 (2008)

    ADS  Google Scholar 

  65. M. Sharma, S. Sen, J. Gupta, M. Ghosh, S. Pitale, V. Gupta, S.C. Gadkari, J. Mater. Res. 33, 3963 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are very much obliged for getting partial financial assistance from the University Grants Commission (UGC), New Delhi, India for departmental CAS scheme (no. F. 530/5/CAS/2011(SAP-I)) and from Department of Science and Technology (DST), Govt. of India under FIST (Fund for Improvement in Science and Technology) programme (Grant no. SR/FST/PS-II-001/2011). The author grateful to Prof. Atis Chandra Mandal, Department of Physics, The University of Burdwan for providing necessary facility to carry out the experiments also he is thankful to Prof. Partha Mitra for allowing the UV-Vis spectrometer to take the requisite data of the experimental sample.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a significant contribution to the research reported and have read and approved the submitted manuscript, and furthermore, all those who made substantive contributions to this work have been included in the author list.

Corresponding author

Correspondence to Atis Chandra Mandal.

Ethics declarations

Conflict of interest

The authors hereby declare that there are no relevant financial or non-financial competing interests to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Ali, S.I. & Mandal, A.C. Investigation of structural, optical and photoluminescence properties of the sol–gel synthesized powder ZnS nanoparticles. Appl. Phys. A 129, 219 (2023). https://doi.org/10.1007/s00339-023-06499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06499-z

Keywords

Navigation