Skip to main content
Log in

Novel fractal-based dual-mode quasi-elliptic microstrip band-pass filter for WLAN applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This article presents the design of a compact quasi-elliptic dual-mode microstrip band-pass filter deploying a novel Sierpinski–Knopp fractal geometry on a patch resonator. In this work, a rectangular perturbation is inserted at the diagonal edge of the resonator with fractal slots to realize dual-mode response with two transmission zeros near each skirt. The fractal BPF is designed, simulated, and measured at the resonant frequency of 2.38 GHz for wireless local area network applications. The fabricated filter exhibits insertion loss less than 1.43 dB, return loss greater than 14.33 dB with a 3-dB narrow fractional bandwidth of 4.62%. Moreover, it has a compact size of 24.6 × 24.6 mm2, suitable for the requirements of wireless communication systems. A good agreement is obtained between the simulated and measured results for the proposed filter design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. J.S. Hong, Microstrip Filters for RF/Microwave Applications (Wiley, New Jersey, 2011)

    Book  Google Scholar 

  2. S.B. Zhang, L. Zhu, R. Weerasekera, Synthesis of inline mixed coupled quasi-elliptic bandpass filters based on λ/4 resonators. IEEE Trans. Microw. Theory Tech. 63(10), 3487–3493 (2015). https://doi.org/10.1109/TMTT.2015.2467380

    Article  ADS  Google Scholar 

  3. S. Moscato, C. Tomassoni, M. Bozzi, L. Perregrini, Quarter-mode cavity filters in substrate integrated waveguide technology. IEEE Trans. Microw. Theory Tech. 64(8), 2538–2547 (2016). https://doi.org/10.1109/TMTT.2016.2577690

    Article  ADS  Google Scholar 

  4. L.Y. Feng, Fractal dual-mode open-loop quasi-elliptic bandpass filter with source-load coupling. Wireless Pers. Commun. 103(2), 1113–1120 (2018). https://doi.org/10.1007/s11277-017-5220-1

    Article  Google Scholar 

  5. V.K. Velidi, S. Sanyal, Sharp-rejection microstrip bandpass filters with multiple transmission zeros. AEU Int. J. Electron. Commun. 64(12), 1173–1177 (2010). https://doi.org/10.1016/j.aeue.2010.01.015

    Article  Google Scholar 

  6. Y. Wu, B. Hu, L. Nan, Y. Liu, Compact high-selectivity bandpass filter using a novel uniform coupled-line dual-mode resonator. Microw. Opt. Technol. Lett. 57(10), 2355–2358 (2015). https://doi.org/10.1002/mop.29336

    Article  Google Scholar 

  7. T.K. Das, S. Chatterjee, Improved second harmonic suppression in a compact coupled-line bandpass filter with triangular corrugations. Microsyst. Technol. 25(5), 1945–1956 (2019). https://doi.org/10.1007/s00542-018-3940-0

    Article  Google Scholar 

  8. F.M. Alnahwi, Y.I.A. Al-Yasir, A.A. Abdulhameed, A.S. Abdullah, R.A. Abd-Alhameed, A low-cost microwave filter with improved passband and stopband characteristics using stub loaded multiple mode resonator for 5G mid-band applications. Electronics 10(4), 450 (2021). https://doi.org/10.3390/electronics10040450

    Article  Google Scholar 

  9. J.G. Duarte Júnior, J.G.D. Oliveira, V.P.D. Silva Neto, A.G. D’Assunção, A high-selectivity bandpass filter using dual-mode coupling resonator. J. Microwaves Optoelectron. Electromagn. Appl. 21(1), 131–140 (2022). https://doi.org/10.1590/2179-10742022v21i1254108

    Article  Google Scholar 

  10. A. Gorur, Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications. IEEE Trans. Microw. Theory Tech. 52(2), 671–677 (2004). https://doi.org/10.1109/TMTT.2003.822033

    Article  ADS  Google Scholar 

  11. S.G. Mo, Z.Y. Yu, L. Zhang, Compact dual-mode bandpass filters using hexagonal meander loop resonators. J. Electromagn. Waves Appl. 23(13), 1723–1732 (2009). https://doi.org/10.1163/156939309789566941

    Article  ADS  Google Scholar 

  12. K. Song, Y. Zhu, M. Zhao, M. Fan, Y. Fan, Miniaturized bandpass filter using dual-mode hexagonal loop resonator. Int. J. Microw. Wirel. Technol. 9(5), 1003–1008 (2017). https://doi.org/10.1017/S1759078716001094

    Article  Google Scholar 

  13. W. Feng, X. Gao, W. Che, Q. Xue, Bandpass filter loaded with open stubs using dual-mode ring resonator. IEEE Microwave Wirel. Compon. Lett. 25(5), 295–297 (2015). https://doi.org/10.1109/LMWC.2015.2410174

    Article  Google Scholar 

  14. Y.C. Chiou, C.Y. Wu, J.T. Kuo, New miniaturized dual-mode dual-band ring resonator bandpass filter with microwave C-sections. IEEE Microwave Wirel. Compon. Lett. 20(2), 67–69 (2010). https://doi.org/10.1109/LMWC.2009.2038432

    Article  Google Scholar 

  15. J.S. Hong, S. Li, Theory and experiment of dual-mode microstrip triangular patch resonators and filters. IEEE Trans. Microw. Theory Tech. 52(4), 1237–1243 (2004). https://doi.org/10.1109/TMTT.2004.825653

    Article  ADS  Google Scholar 

  16. K.G. Avinash, I.S. Rao, Compact dual-mode microstrip bandpass filters with transmission zeros using modified star shaped resonator. Progr. Electromagn. Res. C 71, 177–187 (2017). https://doi.org/10.2528/PIERC16122801

    Article  Google Scholar 

  17. F.L. Zhao, M.H. Weng, C.Y. Tsai, R.Y. Yang, H.Z. Lai, S.K. Liu, A miniaturized high selectivity bandpass filter using a dual-mode patch resonator with two pairs of slots. Microw. Opt. Technol. Lett. 62(3), 1145–1151 (2020). https://doi.org/10.1002/mop.32165

    Article  Google Scholar 

  18. S. Karthie, S. Salivahanan, Fractally slotted patch resonator based compact dual-mode microstrip bandpass filter for wireless LAN applications. AEU Int. J. Electron. Commun. 107, 264–274 (2019). https://doi.org/10.1016/j.aeue.2019.05.037

    Article  Google Scholar 

  19. Y.S. Mezaal, H.H. Saleh, H. Al-saedi, New compact microstrip filters based on quasi-fractal resonator. Adv. Electromagn. 7(4), 93–102 (2018). https://doi.org/10.7716/aem.v7i4.883

    Article  ADS  Google Scholar 

  20. S. Neeboriya, Novel dual-mode microstrip triangular patch resonator bandpass filter. J. Commun. Technol. Electron. 64(12), 1445–1449 (2019). https://doi.org/10.1134/S106422691912012X

    Article  Google Scholar 

  21. T.K. Das, S. Chatterjee, Compact hairpin line bandpass filter with improved spurious passbands suppression. Int. J. Electron. 108(8), 1309–1325 (2021). https://doi.org/10.1080/00207217.2020.1859142

    Article  Google Scholar 

  22. Q. Liu, D. Zhou, D. Zhang, D. Lü, Y. Zhang, Dual-mode microstrip patch bandpass filters with generalized frequency responses. IEEE Access 7, 163537–163546 (2019). https://doi.org/10.1109/ACCESS.2019.2952403

    Article  Google Scholar 

  23. S. Karthie, J. Zuvairiya Parveen, D. Yogeshwari, E. Venkadeshwari, Compact dual-mode microstrip bandpass filter based on slotted square patch resonator. Microelectron. Int. 39(2), 49–57 (2022). https://doi.org/10.1108/MI-08-2021-0080

    Article  Google Scholar 

  24. F.C. Chen, Q.X. Chu, Design of compact tri-band bandpass filters using assembled resonators. IEEE Trans. Microw. Theory Tech. 57(1), 165–171 (2009). https://doi.org/10.1109/TMTT.2008.2008963

    Article  ADS  Google Scholar 

  25. J. Xu, W. Wu, C. Miao, Compact microstrip dual-/tri-/quad-band bandpass filter using open stubs loaded shorted stepped-impedance resonator. IEEE Trans. Microw. Theory Tech. 61(9), 3187–3199 (2013). https://doi.org/10.1109/TMTT.2013.2273759

    Article  ADS  Google Scholar 

  26. H. Guo, J. Ni, J.S. Hong, Varactor-tuned dual-mode bandpass filter with nonuniform Q distribution. IEEE Microwave Wirel. Compon. Lett. 28(11), 1002–1004 (2018). https://doi.org/10.1109/LMWC.2018.2870934

    Article  Google Scholar 

  27. A. Fernández-Prieto, J. Martel, P.J. Ugarte-Parrado, A. Lujambio, A.J. Martinez-Ros, F. Martín, F. Medina, R.R. Boix, Compact balanced dual-band bandpass filter with magnetically coupled embedded resonators. IET Microwaves Antennas Propag. 13(4), 492–497 (2019). https://doi.org/10.1049/iet-map.2018.5573

    Article  Google Scholar 

  28. M. Faisal, S. Khalid, M.U. Rehman, M.A. Rehman, Synthesis and design of highly selective multi-mode dual-band bandstop filter. IEEE Access 9, 43316–43323 (2021). https://doi.org/10.1109/ACCESS.2021.3065729

    Article  Google Scholar 

  29. B.B. Mandelbrot, The Fractal Geometry in Nature (Freeman, 1983)

    Book  Google Scholar 

  30. H. Sagan, Space-Filling Curves (Springer, New York, 1994)

    Book  MATH  Google Scholar 

  31. P. Jarry, J. Beneat, Design and Realizations of Miniaturized Fractal RF and Microwave Filters (Wiley, New Jersey, 2009)

    Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design of band-pass filter. Material preparation, simulation, and analysis of microstrip dual-mode filter in this proposed work were performed by SK and SLM. The first draft of the manuscript was written by SK, and both the authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Karthie.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

The corresponding author gives his consent and accepts responsibility for publishing this manuscript on behalf of all co-authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthie, S., Manibala, S.L. Novel fractal-based dual-mode quasi-elliptic microstrip band-pass filter for WLAN applications. Appl. Phys. A 129, 199 (2023). https://doi.org/10.1007/s00339-023-06495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06495-3

Keywords

Navigation