Skip to main content

Advertisement

Log in

Concentration-induced morphological changes of biocompatible La3+, Yb3+, Er3+ tri-doped NaYF4 compounds

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The upconversion (UC) materials possess luminescence and magnetic properties that attempt greater significance in detecting cancer cells. This work targets the effects of doping (10–30%) La3+ into NaYF4:Yb3+, Er3+ compounds using the hydrothermal technique with trisodium citrate as a stabilisation and capping agent. X-ray diffraction pattern (XRD) confirmed the crystal phases of La3+-doped (α + β) NaYF4:Yb3+, Er3+ compounds. The Williamson–Hall equation calculated the crystallite size and lattice strain of the synthesised particles. The morphological studies depicted the growth of the particles from hexagonal plates to rods on doping La3+ from 10 to 30% doping concentrations. The sample NaYF4:Yb3+, Er3+, 20% La3+ has shown maximum UC red emission and green emission intensity at 976 and 795 nm excitation, respectively, which makes the material eligible for bio-imaging application. The entire sample displayed paramagnetic properties. The cytotoxicity test on Vero cell lines assessed the viability of the prepared samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The datasets generated during the current study are available from the corresponding author at reasonable request.

References

  1. G. Jalani, R. Naccache, D.H. Rosenzweig, L. Haglund, F. Vetrone, M. Cerruti, J. Am. Chem. Soc. 138(3), 1078–1083 (2016). https://doi.org/10.1021/jacs.5b12357

    Article  Google Scholar 

  2. Z. Hou, C. Li, P. Ma, Z. Cheng, X. Li, X. Zhang, Y. Dai, D. Yang, H. Lian, J. Lin, Adv. Funct. Mater. 22(13), 2713–2722 (2012). https://doi.org/10.1002/adfm.201200082

    Article  Google Scholar 

  3. F. Zhang, Y. Wan, T. Yu, F. Zhang, Y. Shi, S. Xie, Y. Li, L. Xu, B. Tu, D. Zhao, Angew. Chem. Int. Ed. 46(42), 7976–7979 (2007). https://doi.org/10.1002/anie.200702519

    Article  Google Scholar 

  4. Q. Lu, D. Wei, J. Cheng, J. Xu, J. Zhu, J Solid State Chem. 192, 75–80 (2012). https://doi.org/10.1016/j.jssc.2012.03.016

    Article  ADS  Google Scholar 

  5. K. Wu, J. Cui, X. Kong, Y. Wang, J. Appl. Phys. 110(5), 053510 (2011). https://doi.org/10.1063/1.3631822

    Article  ADS  Google Scholar 

  6. G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, Y. Zhao, Adv. Mater. 24(9), 1226–1231 (2012). https://doi.org/10.1002/adma.201104741

    Article  Google Scholar 

  7. H. Yu, W. Cao, Q. Huang, E. Ma, X. Zhang, J. Yu, J. Solid State Chem. 207, 170–177 (2013). https://doi.org/10.1016/j.jssc.2013.09.017

    Article  ADS  Google Scholar 

  8. D. Kumar, K. Verma, S. Verma, B. Chaudhary, S. Som, V. Sharma, V. Kumarc, H.C. Swart, Phys. B Condens. Matter 535(April), 278–286 (2018). https://doi.org/10.1016/j.physb.2017.08.003

    Article  ADS  Google Scholar 

  9. S. Xu, W. Xu, B. Dong, X. Bai, H. Song, J. Appl. Phys. 110(11), 1–8 (2011). https://doi.org/10.1063/1.3666068

    Article  Google Scholar 

  10. S. Namagal, N.V. Jaya, M. Muralidharan, S. Sumithra, J. Mater. Sci. Mater. Electron. 31(14), 11398–11410 (2020). https://doi.org/10.1007/s10854-020-03689-w

    Article  Google Scholar 

  11. C. Li, J. Yang, Z. Quan, P. Yang, D. Kong, J. Lin, Chem. Mater. 19(20), 4933–4942 (2007). https://doi.org/10.1021/cm071668g

    Article  Google Scholar 

  12. S. Fischer, J.C. Goldschmidt, P. Löper, G.H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, S.W. Glunz, J. Appl. Phys. 10(1063/1), 3478742 (2010)

    Google Scholar 

  13. D.T. Klier, M.U. Kumke, J. Phys. Chem. C. 119(6), 3363–3373 (2015). https://doi.org/10.1021/jp5103548

    Article  Google Scholar 

  14. X. Zhao, M.C. Tan, J. Mater. Chem. C. 3(39), 10207–10214 (2015). https://doi.org/10.1039/c5tc02147b

    Article  Google Scholar 

  15. Z. Qin, S. Du, Y. Luo, Z. Liao, F. Zuo, J. Luo, D. Liu, Appl. Surf. Sci. 378, 174–180 (2016). https://doi.org/10.1016/j.apsusc.2016.03.219

    Article  ADS  Google Scholar 

  16. M. Lin, Y. Gao, F. Hornicek, F. Xu, T.J. Lu, M. Amiji, Z. Duan, Adv. Colloid Interface Sci. 226, 123–137 (2015). https://doi.org/10.1016/j.cis.2015.10.003

    Article  Google Scholar 

  17. S. Namagal, N.V. Jaya, Mater. Today Commun. 32(7), 103986 (2022). https://doi.org/10.1016/j.mtcomm.2022.103986

    Article  Google Scholar 

  18. S. Namagal, N.V. Jaya, N. Nithyaa, M. Muralidharan, S. Venkatesh, J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02342-9

    Article  Google Scholar 

  19. I.A. Razumkova, J. Fluor. Chem. 205, 1–4 (2018). https://doi.org/10.1016/j.jfluchem.2017.10.012

    Article  Google Scholar 

  20. S.S. Perera, D.K. Amarasinghe, K.T. Dissanayake, F.A. Rabuffetti, Chem. Mater. 29(15), 6289–6297 (2017). https://doi.org/10.1021/acs.chemmater.7b01495

    Article  Google Scholar 

  21. N. Eu, RSC Adv. 12, 30803–30816 (2022). https://doi.org/10.1039/d2ra05674g

    Article  Google Scholar 

  22. L. Tashi, R. Singhaal, M. Kumar, H.N. Sheikh, New J. Chem. 44(45), 19908–19923 (2020). https://doi.org/10.1039/d0nj04288a

    Article  Google Scholar 

  23. J. Fu, X. Zhang, Z. Chao, Z. Li, J. Liao, D. Hou, H. Wen, X. Lu, X. Xie, Opt. Laser Technol. 88(September), 280–286 (2017). https://doi.org/10.1016/j.optlastec.2016.09.029

    Article  ADS  Google Scholar 

  24. V.G. Ilvesa, S.Y. Sokovnina, M.G. Zuevb, M.A. Uimind, D.V. Privalovad, J. Kozlovae, V. Sammelselg, J. Fluor. Chem. 231(January), 109457 (2020). https://doi.org/10.1016/j.jfluchem.2020.109457

    Article  Google Scholar 

  25. T. Vairapperumal, A. Saraswathy, J.S. Ramapurath, S. Kalarical-Janardhanan, N. Balachandran-Unni, Sci. Rep. 6(September), 1–12 (2016). https://doi.org/10.1038/srep34976

    Article  Google Scholar 

  26. A. Kumar, S.P. Tiwari, J.C.G. Esteves Da Silva, K. Kumar, Laser Phys. Lett. 15(7), aab123 (2018). https://doi.org/10.1088/1612-202X/aab123

    Article  Google Scholar 

  27. P. Verma, D. Sarkar, P. Rajput, M.N. Singh, R. Sharma, S. Giri, Cryst. Growth Des. 20(1), 468–478 (2020). https://doi.org/10.1021/acs.cgd.9b01426

    Article  Google Scholar 

  28. S. Sinha, M.K. Mahata, H.C. Swart, A. Kumar, K. Kumar, New J. Chem. 41(13), 5362–5372 (2017). https://doi.org/10.1039/c7nj00086c

    Article  Google Scholar 

  29. M.K. Mahata, T. Koppea, T. Mondalb, C. Brüsewitza, K. Kumarb, V.K. Raib, H. Hofsässa, U. Vetter, Phys. Chem. Chem. Phys. 17(32), 20741–20753 (2015). https://doi.org/10.1039/c5cp01874a

    Article  Google Scholar 

  30. S. Tek, B.A. Vincent, L.C. Mimun, A. Ponce, K.L. Nash, Cryst. Growth Des. 20(4), 2153–2163 (2020). https://doi.org/10.1021/acs.cgd.9b00902

    Article  Google Scholar 

  31. A.M. Alattar, R.A. Mohammed, M.J. Alwazzan, W.A.A. Twej, Opt. Mater. (Amst). 118(April), 111274 (2021). https://doi.org/10.1016/j.optmat.2021.111274

    Article  Google Scholar 

  32. N.C. Dyck, F.C.J.M. Van Veggel, G.P. Demopoulos, ACS Appl. Mater. Interfaces. 5(22), 11661–11667 (2013). https://doi.org/10.1021/am403100t

    Article  Google Scholar 

  33. M. Wang, C.C. Mi, W.X. Wang, C.H. Liu, Y.F. Wu, Z.R. Xu, C.B. Mao, S.K. Xu, ACS Nano 3(6), 1580–1586 (2009). https://doi.org/10.1021/nn900491

    Article  Google Scholar 

  34. A.A. Ansari, J.P. Labis, A. Khan, J. Saudi Chem. Soc. 25(12), 101390 (2021). https://doi.org/10.1016/j.jscs.2021.101390

    Article  Google Scholar 

  35. J.F. Suyver, J. Grimm, M.K. Van Veen, D. Biner, K.W. Krämer, H.U. Güdel, J. Lumin. 117(1), 1–12 (2006). https://doi.org/10.1016/j.jlumin.2005.03.011

    Article  Google Scholar 

  36. Q. Chen, Z. Li, B. Miao, Q. Ma, J. Alloys Compd. 858, 157631 (2021). https://doi.org/10.1016/j.jallcom.2020.157631

    Article  Google Scholar 

  37. X. Zhang, X. Qin, W. Zhang, Opt. Mater. (Amst). 114(February), 110910 (2021). https://doi.org/10.1016/j.optmat.2021.110910

    Article  Google Scholar 

  38. V. Oleksa, H. Macková, H. Engstová, V. Patsula, O. Shapoval, N. Velychkivska, P. Ježek, D. Horák, Sci. Rep. 11(1), 1–15 (2021). https://doi.org/10.1038/s41598-021-00845-y

    Article  Google Scholar 

  39. J. Liu, X. Liu, X. Kong, H. Zhang, J. Solid State Chem. 190, 98–103 (2012). https://doi.org/10.1016/j.jssc.2012.01.058

    Article  ADS  Google Scholar 

  40. G.D. Gao, X. Zhang, W. Gao, ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013). https://doi.org/10.1021/am402843h

    Article  Google Scholar 

  41. Y. Wu, Y. Ji, J. Xu, J. Liu, Z. Lin, Y. Zhao, Y. Sun, L. Xu, K. Chen, Acta Mater. 131, 373–379 (2017). https://doi.org/10.1016/j.actamat.2017.04.013

    Article  ADS  Google Scholar 

  42. A. Kavand, C.A. Serra, C. Blanck, M. Lenertz, N. Anton, T.F. Vandamme, Y. Mély, F. Przybilla, D.C. Seng, ACS Appl. Nano Mater. 4(5), 5319–5329 (2021). https://doi.org/10.1021/acsanm.1c00664

    Article  Google Scholar 

  43. D. Hu, M. Chen, Y. Gao, F. Li, L. Wu, J. Mater. Chem. 21(30), 11276–11282 (2011). https://doi.org/10.1039/c1jm11172h

    Article  Google Scholar 

  44. H. Schäfer, P. Ptacek, H. Eickmeier, M. Haase, Adv. Funct. Mater. 19(19), 3091–3097 (2009). https://doi.org/10.1002/adfm.200900642

    Article  Google Scholar 

  45. S.F. Himmelsto, T. Hirsch, Part. Part. Syst. Charact. (2019). https://doi.org/10.1002/ppsc.201900235

    Article  Google Scholar 

  46. J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, H. Zhangl, J. Phys. Chem. B. 112(49), 15666–15672 (2008). https://doi.org/10.1021/jp805567k

    Article  Google Scholar 

  47. B. Jiang, X. Wang, J. Alloys Compd. 831, 154785 (2020). https://doi.org/10.1016/j.jallcom.2020.154785

    Article  Google Scholar 

  48. Y. Mao, Z. Wang, R. Ye, L. Jiang, S. Hu, J. Yang, Dalt. Trans. 49(43), 15433–15442 (2020). https://doi.org/10.1039/d0dt02955f

    Article  Google Scholar 

  49. V. Tamilmani, A.K. Soni, V.K. Rai, B.U. Nair, K.J. Sreeram, J. Chem. Sci. 129(12), 1929–1940 (2017). https://doi.org/10.1007/s12039-017-1401-4

    Article  Google Scholar 

  50. M. Zhanga, X. Zhaic, P. Leia, S. Yaoa, X. Xua, L. Donga, K. Dua, C. Lia, J. Fenga, H. Zhang, J. Lumin. 215(July), 116632 (2019). https://doi.org/10.1016/j.jlumin.2019.116632

    Article  Google Scholar 

  51. Z. Huang, H. Gao, Y. Mao, RSC Adv. 6(86), 83321–83327 (2016). https://doi.org/10.1039/c6ra10969a

    Article  ADS  Google Scholar 

  52. P. Padhye, P. Poddar, J. Mater. Chem. A. 2(45), 19189–19200 (2014). https://doi.org/10.1039/c4ta04274c

    Article  Google Scholar 

  53. J. Zhao, Z. Lu, Y. Yin, C. McRae, J.A. Piper, J.M. Dawes, D. Jin, E.M. Goldys, Nanoscale 5(3), 944–952 (2013). https://doi.org/10.1039/c2nr32482b

    Article  ADS  Google Scholar 

  54. D. Gao, D. Wang, X. Zhang, X. Feng, H. Xin, S. Yund, D. Tian, J. Mater. Chem. C. 6(3), 622–629 (2018). https://doi.org/10.1039/c7tc05032a

    Article  Google Scholar 

  55. F. Vetrone, R. Naccache, V. Mahalingam, C.G. Morgan, J.A. Capobianco, Adv. Funct. Mater. 19(18), 2924–2929 (2009). https://doi.org/10.1002/adfm.200900234

    Article  Google Scholar 

  56. H. Xu, S. Han, R. Deng, Q. Su, Y. Wei, Y. Tang, X. Qin, X. Liu, Nat. Photonics. 15(10), 732–737 (2021). https://doi.org/10.1038/s41566-021-00862-3

    Article  ADS  Google Scholar 

  57. Q. Cheng, Y. Li, S. Liu, J. Sui, W. Cai, RSC Adv. 5(113), 93547–93553 (2015). https://doi.org/10.1039/c5ra21721k

    Article  ADS  Google Scholar 

  58. Q. Bo, J. Wang, J. Fluor. Chem. 233(February), 109503 (2020). https://doi.org/10.1016/j.jfluchem.2020.109503

    Article  Google Scholar 

  59. T.M.D. Cao, T.T.G. Le, T.P.N. Nguyen, T.A.N. Dau, V.T. Nguyen, T.T.V. Tran, J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.128014

    Article  Google Scholar 

  60. Z. Chen, Q. Tian, Y. Song, J. Yang, J. Hu, J. Alloys Compd. 506(2), 12–14 (2010). https://doi.org/10.1016/j.jallcom.2010.07.087

    Article  Google Scholar 

  61. J.Y. Law, J. Rial, M. Villanueva, N. López, J. Camarero, L.G. Marshall, J.S. Blázquez, J.M. Borrego, V. Franco, A. Conde, L.H. Lewis, A. Bollero, J. Alloys Compd. 712, 373–378 (2017). https://doi.org/10.1016/j.jallcom.2017.04.038

    Article  Google Scholar 

  62. D. Yin, C. Wang, J. Ouyang, K. Song, B. Liu, X. Cao, L. Zhang, Y. Han, X. Long, M. Wu, Dalt. Trans. 43(31), 12037–12043 (2014). https://doi.org/10.1039/c4dt00172a

    Article  Google Scholar 

  63. R. Reda, A. Zanza, A. Mazzoni, A. Cicconetti, L. Testarelli, D. Di Nardo, J. Imaging. (2021). https://doi.org/10.3390/jimaging7050075

    Article  Google Scholar 

  64. A. Karpavičius, A. Coene, P. Bender, J. Leliaert, Nanoscale Adv. 3(6), 1633–1645 (2021). https://doi.org/10.1039/d0na00966k

    Article  ADS  Google Scholar 

  65. S. Singh, Kanika, G. Kedawat, J.H. Park, B. Ghorai, U.K. Ghorai, C. Upadhyay, B.A. Kaipparettu, B.K. Gupta, J. Photochem. Photobiol. 8, 100081 (2021). https://doi.org/10.1016/j.jpap.2021.100081

    Article  Google Scholar 

  66. A.A. Ansari, A.K. Parchur, J.P. Labis, M.A. Shar, Photochem. Photobiol. Sci. 20(9), 1195–1208 (2021). https://doi.org/10.1007/s43630-021-00092-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Science & Technology (DST), Government of India, for providing financial support to Mrs Namagal S vide reference no.SR/WOS-A/PM-97/2017 under Women Scientist Scheme (WOS-A) to carry out this work, CIF—Pondicherry University for characterisation facilities, IIT madras for XRD facilities and Greensmed Labs for cytotoxicity study.

Author information

Authors and Affiliations

Authors

Contributions

Methods, including statements of data availability and references, are available in the online version of this paper. SN: conceptualization; material preparation; data curation; formal analysis; funding acquisition; investigation; methodology; original draft; writing. NVJ:  project administration; resources; supervision; validation; visualization.

Corresponding author

Correspondence to S. Namagal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7306 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namagal, S., Victor Jaya, N. Concentration-induced morphological changes of biocompatible La3+, Yb3+, Er3+ tri-doped NaYF4 compounds. Appl. Phys. A 129, 206 (2023). https://doi.org/10.1007/s00339-023-06494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06494-4

Keywords

Navigation