Skip to main content
Log in

Acoustic Fano-like resonance phenomenon based local resonance generated by soft material cylinder

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Herein, we developed acoustic Fano-like resonance phenomenon based local resonance. Unlike the previous mentioned coupled pillar design, asymmetrical space distributions can be designed by mode-selective feature of a cylinder with fixed top and bottom surface. For verifying the proposed phenomenon, two topologies are designed which are hybrid hard and soft cylinders topology and double soft cylinders topology. The proposed topologies are composed of three-unit cells, each employing two geometry identical ring-shaped pillars clamped on top and bottom surface of the square wave cavity. The lattice in the middle is consisted of two kinds of cylinders made by soft TPU material and hard resin material in the hybrid topology, while the middle lattice of the double soft topology is consisted of two soft cylinders. The corresponding Fano resonance are confirmed through both simulation and experiments. Both designs can generate Fano-like resonance phenomenon due to the different deformation under the same frequency leading to the local space asymmetric. The asymmetrical space has the capability of triggering standing pressure wave, which couples with the propagating traveling wave for constructive and destructive sound transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this article are available from the corresponding author, upon reasonable request.

References

  1. U. Fano, Phys. Rev. 124, 1866 (1961)

    Article  ADS  Google Scholar 

  2. A.C. Johnson, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 93, 106803 (2004)

    Article  ADS  Google Scholar 

  3. H. Tamura, S. Sasaki, Fano-Kondo effect in side-coupled double quantum dot. Phys. E Low Dimens. 42, 864 (2010)

    Google Scholar 

  4. S. Rotter, F. Libisch, J. Burgdörfer, U. Kuhl, H.J. Stöckmann, Phys. Rev. E 69, 046208 (2004)

    Article  ADS  Google Scholar 

  5. A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, H.J. Stöckmann, Phys. Rev. Lett. 105, 056801 (2010)

    Article  ADS  Google Scholar 

  6. E.O. Kamenetskii, G. Vaisman, R. Shavit, J. Appl. Phys. 114, 173902 (2013)

    Article  ADS  Google Scholar 

  7. B. Luk’Yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9, 707 (2010)

    Article  ADS  Google Scholar 

  8. P. Fan, Z. Yu, S. Fan, M.L. Brongersma, Nat. Mater. 13, 471 (2014)

    Article  ADS  Google Scholar 

  9. F. Shafiei, F. Monticone, K.Q. Le, X.X. Liu, T. Hartsfield, A. Alù, X. Li, Nat. Nanotechnol. 8, 95 (2013)

    Article  ADS  Google Scholar 

  10. C. Argyropoulos, F. Monticone, G. Daguanno, A. Alù, Appl. Phys. Lett. 103, 143113 (2013)

    Article  ADS  Google Scholar 

  11. Y. Wang, L. Liao, T. Hu, S. Luo, L. Wu, J. Wang, Z. Zhang, W. Xie, L. Sun, A.V. Kavokin, X. Shen, Z. Chen, Phys. Rev. Lett. 118, 063602 (2017)

    Article  ADS  Google Scholar 

  12. J. Butet, O.J.F. Martin, Opt. Express 22, 29693 (2014)

    Article  ADS  Google Scholar 

  13. R. Prasanth, L.K. van Vugt, D.A.M. Vanmaekelbergh, H.C. Gerritsen, Appl. Phys. Lett. 88, 181501 (2006)

    Article  ADS  Google Scholar 

  14. R.W. Boyd, Nonlinear optics (Academic, New York, 2003)

    Google Scholar 

  15. M.G. Capeluto, G. Grinblat, M. Tirado, D. Comedi, A.V. Bragas, Opt. Express 22, 5341 (2014)

    Article  ADS  Google Scholar 

  16. Z. Ruan, S. Fan, Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle. J. Phys. Chem. C 114, 7324–7329 (2010)

    Article  Google Scholar 

  17. S. Hein, W. Koch, L. Nannen, J. Fluid Mech. 664, 238–264 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. L. Xiong, W. Bi, Y. Aurégan, J. Acoust. Soc. Am. 139, 764–772 (2016)

    Article  ADS  Google Scholar 

  19. F. Zangeneh-Nejad, R. Fleury, Phys. Rev. Lett. 122, 1–6 (2019)

    Article  Google Scholar 

  20. O.S. Latcham, Y.I. Gusieva, A.V. Shytov, O.Y. Gorobets, V.V. Kruglyak, Appl. Phys. Lett. 117, 1–6 (2020)

    Article  Google Scholar 

  21. M. Sun, X. Fang, D. Mao, X. Wang, Y. Li, Phys. Rev. Appl. 13, 1–8 (2020)

    Google Scholar 

  22. Y. Cheng, C. Zhou, B.G. Yuan, D.J. Wu, Q. Wei, X.J. Liu, Nat. Mater. 14, 1013–1019 (2015)

    Article  ADS  Google Scholar 

  23. H. Q. Nguyen, Q. Wu, H. Chen, J. J. Chen, Y. K. Yu, S. Tracy, G. L. Huan, Proc. R. Soc. A Math. Phys. Eng. Sci. 477, (2021)

  24. R. Ghaffarivardavagh, J. Nikolajczyk, S. Anderson, X. Zhang, Phys. Rev. B 99, 1–10 (2019)

    Article  Google Scholar 

  25. A. Biçer, M. Günay, N. Korozlu, A. Cicek, Appl. Phys. Lett. 120, (2022)

  26. G. Wang, L. Jin, P. Li, Z. Xu, Appl. Phys. Lett. 109, (2016)

  27. N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, Nat. Mater. 5, 452–456 (2006)

    Article  ADS  Google Scholar 

  28. M. Amin, A. Elayouch, M. Farhat, M. Addouche, A. Khelif, H. Bağci, J. Appl. Phys. 118, (2015)

  29. Y. Y. Sun, J. Xia, H.X. Sun, S. Q. Yuan, Y. Ge, X. J. Liu, Adv. Sci. 6, (2019)

  30. T. Lee, T. Nomura, X. Su, H. Iizuka, Adv. Sci. 7, 1–9 (2020)

    Google Scholar 

  31. Y. Jin, E. H. Ei Boudouti, Y. Pennec, B. Djafari-Rouhani, J. Phys. D. Appl. Phys. 50, (2017)

  32. T. T. Wu, Z. G. Huang, T. C. Tsai, T. C. Wu, Appl. Phys. Lett. 93, (2008)

  33. Y. Pennec, B. Djafari-Rouhani, H. Larabi, J.O. Vasseur, A.C. Hladky-Hennion, Phys. Rev. B Condens. Matter Mater. Phys. 78, 1–8 (2008)

    Article  Google Scholar 

  34. T. Zhang, S.X. Gao, Y. Cheng, X.J. Liu, Ultrasonics 91, 129–133 (2019)

    Article  Google Scholar 

  35. Y. Jin, N. Fernez, Y. Pennec, B. Bonello, P.R. Moiseyenko, S. Hémon, Y.D. Pan, B.D. Rouhani, Phys. Rev. B 93, 1–8 (2016)

    Google Scholar 

  36. M. Oudich, R. Djafari, B. Bonello, Y. Pennec, S. Hemaidia, F. Sarry, D. Beyssen, Phys. Rev. Appl. 9, 34013 (2018)

    Article  Google Scholar 

  37. E. H. El Boudouti, T. Mrabti, H. A. Wahsh, B. D. Rouhani, A. Akjouj, L. Dobrzynski, J. Phys. Condens. Matter 20, (2008)

  38. L. Qi, G. Yu, X. Wang, G. Wang, N. Wang, J. Appl. Phys. 116, (2014)

  39. X. Yang, J. Yin, G. Yu, L. Peng, N. Wang, Appl. Phys. Lett. 107, 1–6 (2015)

    Google Scholar 

  40. S. Chen, Y.C. Fan, F. Yang, K.Y. Sun, Q.H. Fu, J.B. Zheng, F.L. Zhang, Front. Mater. 8, 790987 (2021)

    Article  Google Scholar 

  41. S. Chen, Y.C. Fan, F. Yang, Y. Jin, Q.H. Fu, J.B. Zheng, F.L. Zhang, Phys. Status Solidi RRL 13, 1900426 (2019)

    Article  Google Scholar 

  42. D.Q. Kong, S.B. Huang, D.T. Li et al., J. Acoust. Soc. Am. 150, 12–18 (2021)

    Article  ADS  Google Scholar 

  43. W. Wang, Y.B. Jin, W. Wang, B. Bonello, B. Djafari-Rouhani, R. Fleury, Phys. Rev. B 101, 024101 (2020)

    Article  ADS  Google Scholar 

  44. T. Irvine, Bending frequencies of beams, rods, and pipes, revision S, Vibrationdata, (2012)

  45. T. Irvine, Application of the Newton–Raphson method to vibration problems, revision E, Vibrationdata, (2010)

  46. C.R. Fuller, S.J. Elliott, Active control of noise and vibration (Academic Press, London, 1996)

    Google Scholar 

  47. I. Zaman, M.M. Salleh, M. Ismon, B. Manshoor, A. Khalid, M.S.M. Sani, S. Araby, Study of passive vibration absorbers attached on beam structure. Appl. Mech. Mater. 660, 511 (2014)

    Article  Google Scholar 

  48. L. Sun, H. Hou, J. Acoust. Soc. Am. 129, 1681 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China under Grant 52275009 and Grant 52207038; in part by the Fundamental research funds for the central universities, No. 3216002209A1, in part by the Selected research funds from Nanjing City No. 1116000298.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyao Wang.

Ethics declarations

Conflict of interest

All other authors declare they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Qin, L., Zhang, W. et al. Acoustic Fano-like resonance phenomenon based local resonance generated by soft material cylinder. Appl. Phys. A 129, 213 (2023). https://doi.org/10.1007/s00339-023-06493-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06493-5

Keywords

Navigation