Skip to main content
Log in

Rectangular strip engraved circular patch and connected corrugated stub-based MIMO antenna for Wi-Fi/5G/WiMAX/satellite communication applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rectangular strip engraved circular patch and corrugated stub-shaped multiple input multiple outputs (MIMO) antenna designs is numerically investigated, and measurement results are presented in this research for the frequency range of 1 to 25 GHz. It is first numerically investigated to study the various antenna parameters and conduct fabrication on the suggested antenna. We have presented statistics on different antenna parameters for four distinct antenna designs to identify the behaviour in terms of resonating bandwidth, return loss and operating band of the antenna. The proposed antennas are analyzed in terms of their reflectance, gain, and directivity, as well as their efficiency, peak gain, and electric field distribution. With a return loss of − 55.49 dB in simulated results and − 29.89 dB, the rectangular strips engraved corrugated stub antenna can realize the maximum possible bandwidth of 5.49 GHz in simulation and 5.65 GHz in measured outcomes. We have also presented the MIMO antenna parameters ECC, DG, TARC and CCL to identify the antenna behaviour regarding internal interference and efficient signal transmission. In general, the findings obtained from an antenna have the potential to be applied to a wide variety of communication applications, such as those for 5G, WiFi, WiMAX, and satellite communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Data is available based upon reasonable request from the corresponding author.

References

  1. W. Balani et al., Design techniques of super-wideband antenna-existing and future prospective. IEEE Access 7, 141241–141257 (2019). https://doi.org/10.1109/ACCESS.2019.2943655

    Article  Google Scholar 

  2. N. Fathima, K. S. Nayana, T. Ali, R. C. Biradar, A miniaturized slotted ground fractal Koch multiband antenna for wireless applications, in RTEICT 2017 - 2nd IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol. Proc., vol. 2018-Janua, pp. 251–255, 2017, https://doi.org/10.1109/RTEICT.2017.8256596.

  3. K. Sumathi, S. Lavadiya, P.Z. Yin, J. Parmar, S.K. Patel, High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku-band wireless network applications. Wirel. Netw. 27(3), 2131–2146 (2021). https://doi.org/10.1007/s11276-021-02567-5

    Article  Google Scholar 

  4. M.A. Jensen, J.W. Wallace, A review of antennas and propagation for MIMO wireless communications. IEEE Trans. Antennas Propag. 52(11), 2810–2824 (2004). https://doi.org/10.1109/TAP.2004.835272

    Article  ADS  Google Scholar 

  5. J.D. Park, M. Rahman, H.N. Chen, Isolation enhancement of wideband MIMO array antennas utilizing resistive loading. IEEE Access 7, 81020–81026 (2019). https://doi.org/10.1109/ACCESS.2019.2923330

    Article  Google Scholar 

  6. N. Malekpour, M.A. Honarvar, Design of high-isolation compact MIMO antenna for UWB application. Prog. Electromagn. Res. C 62, 119–129 (2016). https://doi.org/10.2528/PIERC15120902

    Article  Google Scholar 

  7. J. Ren, W. Hu, Y. Yin, R. Fan, Compact printed MIMO antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 13, 1517–1520 (2014). https://doi.org/10.1109/LAWP.2014.2343454

    Article  ADS  Google Scholar 

  8. A. W. Mohammad Saadh, K. Ashwath, P. Ramaswamy, T. Ali, J. Anguera, A uniquely shaped MIMO antenna on FR4 material to enhance isolation and bandwidth for wireless applications, in AEU—Int. J. Electron. Commun., vol. 123, p. 153316, 2020, https://doi.org/10.1016/j.aeue.2020.153316.

  9. Y. Li, W. Li, W. Yu, A multiband/UWB MIMO/diversity antenna with an enhanced isolation using radial stub loaded resonator. Appl. Comput. Electromagn. Soc. J. 28(1), 8–20 (2013)

    Google Scholar 

  10. Y. Zhao, Y. Li, W. Shi, W. Yu, Mutual coupling reduction between patch antenna and microstrip transmission line by using defected isolation wall. Appl. Comput. Electromagn. Soc. J. (2019)

  11. M.S. Aw, K. Ashwath, T. Ali, A compact two element MIMO antenna with improved isolation for wireless applications. J. Instrum. 14(6), P06014–P06014 (2019). https://doi.org/10.1088/1748-0221/14/06/P06014

    Article  Google Scholar 

  12. J. Li et al., Dual-band eight-antenna array design for MIMO applications in 5G mobile terminals. IEEE Access 7, 71636–71644 (2019). https://doi.org/10.1109/ACCESS.2019.2908969

    Article  Google Scholar 

  13. X.L. Liu, Z.D. Wang, Y.Z. Yin, J. Ren, J.J. Wu, A compact ultrawideband MIMO antenna using QSCA for high isolation. IEEE Antennas Wirel. Propag. Lett. 13, 1497–1500 (2014). https://doi.org/10.1109/LAWP.2014.2340395

    Article  ADS  Google Scholar 

  14. S.H. Chae, S.K. Oh, S.O. Park, Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna. IEEE Antennas Wirel. Propag. Lett. 6, 122–125 (2007). https://doi.org/10.1109/LAWP.2007.893109

    Article  ADS  Google Scholar 

  15. P.R. Girjashankar, T. Upadhyaya, A. Desai, Multiband hybrid MIMO DRA for Sub-6 GHz 5G and WiFi-6 applications. Int. J. RF Microw. Comput. Eng. (2022). https://doi.org/10.1002/mmce.23479

    Article  Google Scholar 

  16. T. Upadhyaya et al., Aperture-fed quad-port dual-band dielectric resonator-MIMO antenna for Sub-6 GHz 5G and WLAN application. Int. J. Antennas Propag. 2022, 1–13 (2022). https://doi.org/10.1155/2022/4136347

    Article  Google Scholar 

  17. M.M. Hasan et al., Gain and isolation enhancement of a wideband MIMO antenna using metasurface for 5G sub-6 GHz communication systems. Sci. Rep. 12(1), 9433 (2022). https://doi.org/10.1038/s41598-022-13522-5

    Article  ADS  Google Scholar 

  18. B. BharathiDevi, J. Kumar, Small frequency range discrete bandwidth tunable multiband MIMO antenna for radio/LTE/ISM-2.4 GHz band applications. AEU Int. J. Electron. Commun. 144, 154060 (2022). https://doi.org/10.1016/j.aeue.2021.154060

    Article  Google Scholar 

  19. Y. Dong, P. Liu, D. Yu, G. Li, F. Tao, Dual-band reconfigurable terahertz patch antenna with graphene-stack-based backing cavity. IEEE Antennas Wirel. Propag. Lett. 15, 1541–1544 (2016). https://doi.org/10.1109/LAWP.2016.2533018

    Article  ADS  Google Scholar 

  20. A.A. Megahed, M. Abdelazim, E.H. Abdelhay, H.Y.M. Soliman, Sub-6 GHz highly isolated wideband MIMO antenna arrays. IEEE Access 10, 19875–19889 (2022). https://doi.org/10.1109/ACCESS.2022.3150278

    Article  Google Scholar 

  21. S. Jabeen, Q.U. Khan, An integrated MIMO antenna design for Sub-6 GHz & millimeter-wave applications with high isolation. AEU Int. J. Electron. Commun. 153, 154247 (2022). https://doi.org/10.1016/j.aeue.2022.154247

    Article  Google Scholar 

  22. N.P. Kulkarni, N. BhaskarraoBahadure, P.D. Patil, J.S. Kulkarni, Flexible interconnected 4-port MIMO antenna for sub-6 GHz 5G and X band applications. AEU Int. J. Electron. Commun. 152, 154243 (2022). https://doi.org/10.1016/j.aeue.2022.154243

    Article  Google Scholar 

  23. R. Hussain, M.S. Sharawi, A. Shamim, An integrated four-element slot-based MIMO and a UWB sensing antenna system for CR platforms. IEEE Trans. Antennas Propag. 66(2), 978–983 (2018). https://doi.org/10.1109/TAP.2017.2781220

    Article  ADS  Google Scholar 

  24. R. Anitha, P.V. Vinesh, K.C. Prakash, P. Mohanan, K. Vasudevan, A compact quad element slotted ground wideband antenna for MIMO applications. IEEE Trans. Antennas Propag. 64(10), 4550–4553 (2016). https://doi.org/10.1109/TAP.2016.2593932

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. P. Rajat Girjashankar, T. Upadhyaya, Substrate integrated waveguide fed dual band quad-elements rectangular dielectric resonator MIMO antenna for millimeter wave 5G wireless communication systems. AEU Int. J. Electron. Commun. 137, 153821 (2021). https://doi.org/10.1016/j.aeue.2021.153821

    Article  Google Scholar 

  26. S. Pandit, A. Mohan, P. Ray, A compact four-element MIMO antenna for WLAN applications. Microw. Opt. Technol. Lett. 60(2), 289–295 (2018). https://doi.org/10.1002/mop.30961

    Article  Google Scholar 

  27. B. Azarm, J. Nourinia, C. Ghobadi, M. Majidzadeh, Highly isolated dual band stop two-element UWB MIMO antenna topology for wireless communication applications. J. Instrum. 14(10), P10036–P10036 (2019). https://doi.org/10.1088/1748-0221/14/10/P10036

    Article  Google Scholar 

  28. N. Hatami, J. Nourinia, C. Ghobadi, M. Majidzadeh, B. Azarm, High inter-element isolation and WLAN filtering mechanism: a compact MIMO antenna scheme. AEU Int. J. Electron. Commun. 109, 43–54 (2019). https://doi.org/10.1016/j.aeue.2019.07.001

    Article  Google Scholar 

  29. H. Li, D. Shi, W. Wang, D. Liao, T.R. Gadekallu, K. Yu, Secure routing for LEO satellite network survivability. Comput. Netw. 211, 109011 (2022). https://doi.org/10.1016/j.comnet.2022.109011

    Article  Google Scholar 

  30. W. Wang, H. Xu, M. Alazab, T.R. Gadekallu, Z. Han, C. Su, Blockchain-based reliable and efficient certificateless signature for IIoT devices. IEEE Trans. Ind. Inform. 18(10), 7059–7067 (2022). https://doi.org/10.1109/TII.2021.3084753

    Article  Google Scholar 

  31. F. Ding, G. Zhu, M. Alazab, X. Li, K. Yu, Deep-learning-empowered digital forensics for edge consumer electronics in 5G HetNets. IEEE Consum. Electron. Mag. 11(2), 42–50 (2022). https://doi.org/10.1109/MCE.2020.3047606

    Article  Google Scholar 

  32. M.I. Zahoor, Z. Dou, S.B.H. Shah, I.U. Khan, S. Ayub, T.R. Gadekallu, Pilot decontamination using asynchronous fractional pilot scheduling in massive MIMO systems. Sensors (Switzerland) 20(21), 1–21 (2020). https://doi.org/10.3390/s20216213

    Article  Google Scholar 

  33. K.V. Babu, B. Anuradha, S. Das, Design & analysis of a dual-band MIMO antenna to reduce the mutual coupling. J. Instrum. (2019). https://doi.org/10.1088/1748-0221/14/09/P09023

    Article  Google Scholar 

  34. G. Naga Jyothi Sree, S. Nelaturi, Design and experimental verification of fractal based MIMO antenna for lower sub 6-GHz 5G applications. AEU Int. J. Electron. Commun. (2021). https://doi.org/10.1016/j.aeue.2021.153797

    Article  Google Scholar 

  35. M.S. Sharawi, Printed multiband MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas Propag. Mag. 55(5), 218–232 (2013). https://doi.org/10.1109/MAP.2013.6735522

    Article  ADS  Google Scholar 

  36. A. Moradikordalivand, C.Y. Leow, T.A. Rahman, S. Ebrahimi, T.H. Chua, Wideband MIMO antenna system with dual polarization for WiFi and LTE applications. Int. J. Microw. Wirel. Technol. 8(3), 643–650 (2016). https://doi.org/10.1017/S175907871500032X

    Article  Google Scholar 

  37. S. Chouhan, D.K. Panda, V.S. Kushwah, Modified circular common element four-port multiple-input-multiple-output antenna using diagonal parasitic element. Int. J. RF Microw. Comput. Eng. 29(2), e21527 (2019). https://doi.org/10.1002/mmce.21527

    Article  Google Scholar 

  38. L. Malviya, S. Chouhan, Multi-cut four-port shared radiator with stepped ground and diversity effects for WLAN application. Int. J. Microw. Wirel. Technol. 11(10), 1044–1053 (2019). https://doi.org/10.1017/S1759078719000680

    Article  Google Scholar 

  39. N. Jaglan, S.D. Gupta, E. Thakur, D. Kumar, B.K. Kanaujia, S. Srivastava, Triple band notched mushroom and uniplanar EBG structures based UWB MIMO/Diversity antenna with enhanced wide band isolation. AEU Int. J. Electron. Commun. 90, 36–44 (2018). https://doi.org/10.1016/j.aeue.2018.04.009

    Article  Google Scholar 

  40. S. Chouhan, L. Malviya, Four-port shared rectangular radiator with defected ground for wireless application. Int. J. Commun. Syst. 33(9), e4356 (2020). https://doi.org/10.1002/dac.4356

    Article  Google Scholar 

  41. D. Sarkar, K.V. Srivastava, A compact four-element MIMO/diversity antenna with enhanced bandwidth. IEEE Antennas Wirel. Propag. Lett. 16, 2469–2472 (2017). https://doi.org/10.1109/LAWP.2017.2724439

    Article  ADS  Google Scholar 

  42. A. MoradiKordalivand, T.A. Rahman, M. Khalily, Common elements wideband MIMO antenna system for WiFi/LTE access-point applications. IEEE Antennas Wirel. Propag. Lett. 13, 1601–1604 (2014). https://doi.org/10.1109/LAWP.2014.2347897

    Article  ADS  Google Scholar 

  43. S. Rajkumar, A. Anto Amala, K.T. Selvan, Isolation improvement of UWB MIMO antenna utilizing molecule fractal structure. Electron. Lett. 55(10), 576–579 (2019). https://doi.org/10.1049/el.2019.0592

    Article  ADS  Google Scholar 

  44. A.A. Khan, S.A. Naqvi, M.S. Khan, B. Ijaz, Quad port miniaturized MIMO antenna for UWB 11 GHz and 13 GHz frequency bands. AEU Int. J. Electron. Commun. 131, 153618 (2021). https://doi.org/10.1016/j.aeue.2021.153618

    Article  Google Scholar 

  45. A.H. Radhi, R. Nilavalan, Y. Wang, H.S. Al-Raweshidy, A.A. Eltokhy, N. Ab Aziz, Mutual coupling reduction with a wideband planar decoupling structure for UWB-MIMO antennas. Int. J. Microw. Wirel. Technol. 10(10), 1143–1154 (2018). https://doi.org/10.1017/S1759078718001010

    Article  Google Scholar 

  46. R. Chithradevi, B. S. Sreeja, A compat UWB MIMO antenna with high isolation and low correlation for wireless applications, in 2017 IEEE International Conference on Antenna Innovations and Modern Technologies for Ground, Aircraft and Satellite Applications, iAIM 2017, 2018, pp. 1–4. https://doi.org/10.1109/IAIM.2017.8402534.

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work, under the General Research Funding program grant code (NU/DRP/SERC/12/2).

Funding

This research is funded by Deanship of Scientific Research at Najran University for funding this work, under the General Research Funding program grant code (NU/DRP/SERC/12/2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdulkarem H. M. Almawgani or Vishal Sorathiya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almawgani, A.H.M., Sorathiya, V. Rectangular strip engraved circular patch and connected corrugated stub-based MIMO antenna for Wi-Fi/5G/WiMAX/satellite communication applications. Appl. Phys. A 129, 200 (2023). https://doi.org/10.1007/s00339-023-06489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06489-1

Keywords

Navigation