Skip to main content
Log in

Synthesis, luminescence and photometric investigation of Sr2B2O5:Dy3+ phosphor for UV-based white LEDs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Undoped and a series of Dy3+ activated Sr2B2O5 phosphors were synthesized using the solution combustion technique and further annealed at 900 °C for better crystallinity. The powder X-ray diffraction results confirmed the single-phase monoclinic structure with the P21/c space group and the crystallite size was estimated using the Debye Scherrer formulation. The calculated value varied in the range of 45–49 nm for different molar concentrations of Dy3+ ions. The infrared spectra (IR) confirmed the presence of characteristic vibrational bands of BO3 units. The photoluminescence (PL) excitation spectrum of the phosphor contained characteristic peaks of the Dy3+ ions in the UV and near UV regions. The PL emission spectra exhibit four distinct emission peaks peaking at 4F9/2 → 6H15/2 (485 nm), 4F9/2 → 6H13/2 (575 nm), 4F9/2 → 6H11/2 (668 nm), and 4F9/2 → 6H9/2 (701 nm) corresponding to blue, yellow, red and brownish red emission, respectively. An increase in the optical bandgap values of 4.2 to 4.8 eV was observed with the addition of dopant ions (0.5–3.0 mol%) into the host matrix. In addition to the above mentioned parameters, the average lifetime of the phosphors was determined via decay plot and estimated to be 0.78 ms. The CIE (Commission International de’Eclairage) coordinates and Correlated color temperature (CCT) had respective values of (0.41, 0.43) and 3735 K which confirms the warm yellow light emission from the as-prepared phosphors. All of these findings demonstrated that the prepared phosphors are the auspicious candidate for usage in W-LEDs that generate yellow light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Data supporting the results reported in a published article can be found - including, where applicable, hyperlinks to publicly archived datasets analysed or generated during the study.

References

  1. Y.C. Lin, M. Karlsson, M. Bettinelli, Inorganic phosphor materials for lighting, in Photoluminescent Materials and Electroluminescent Devices. Topics in Current Chemistry Collections. ed. by N. Armaroli, H. Bolink (Springer, Cham, 2017), pp.309–355

    Google Scholar 

  2. J. Cho, J.H. Park, J.K. Kim, E.F. Schubert, White light-emitting diodes: history, progress, and future. Laser Photon. Rev. 11(2), 1600147 (2017)

    ADS  Google Scholar 

  3. A. De Almeida, B. Santos, B. Paolo, M. Quicheron, Solid state lighting review—potential and challenges in Europe. Renew Sustain. Energy Rev. 34, 30–48 (2014)

    Google Scholar 

  4. N.C. George, K.A. Denault, R. Seshadri, Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43, 481–501 (2013)

    ADS  Google Scholar 

  5. L. Chen, C.C. Lin, C.W. Yeh, R.S. Liu, Light converting inorganic phosphors for white light-emitting diodes. Materials 3(3), 2172–2195 (2010)

    ADS  Google Scholar 

  6. J. McKittrick, L.E. Shea-Rohwer, Down conversion materials for solid-state lighting. J. Am. Ceram. Soc. 97(5), 1327–1352 (2014)

    Google Scholar 

  7. S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64(13), 1687–1689 (1994)

    ADS  Google Scholar 

  8. S. Nakamura, M. Senoh, N. Iwasa, S.I. Nagahama, T. Yamada, T. Mukai, Super bright green InGaN single-quantum-well-structure light-emitting diodes. Jpn. J. Appl. Phys. 34(10B), L1332 (1995)

    Google Scholar 

  9. J. Thirumalai, Introductory Chapter: The Impression of Light-Emitting Diodes in Space-Age Advancements and Its Effect of Blue LED Irradiation. Light-Emitting Diode: An Outlook on the Empirical Features and Its Recent Technological Advancements (Intech Open, London, 2018), pp.1–8

    Google Scholar 

  10. J. Chang, Application of photoluminescent and electroluminescent metal-organic frameworks in white light-emitting diodes. ECS J. Solid State Sci. Technol. 10(8), 086009 (2021)

    Google Scholar 

  11. C. Feldmann, T. Jüstel, C.R. Ronda, P.J. Schmidt, Inorganic luminescent materials: 100 years of research and application. Adv. Funct. Mater. 13(7), 511–516 (2003)

    Google Scholar 

  12. R.J. Xie, Y.Q. Li, N. Hirosaki, H. Yamamoto, Nitride Phosphors and Solid-State Lighting (CRC Press, Boca Raton, 2011), p.348

    Google Scholar 

  13. C. Zhao, D.C. Zhu, W. Gao, M.J. Tu, L.L. Luo, T. Han, X.L. Jing, A near-ultraviolet (NUV) converting green-yellow Ca2AlMg0.5Si1.5O7:Eu2+phosphor for white light-emitting-diodes (w-LEDs). Chem. Eng. J. 254, 486–490 (2014)

    Google Scholar 

  14. H.Y. Jiao, Y. Wang, A potential red-emitting phosphor CaSrAl2SiO7: Eu3+ for near-ultraviolet light-emitting diodes. Phys. B Condens. Matter 407(14), 2729–2733 (2012)

    ADS  Google Scholar 

  15. Y.S. Peng, W.W. Shi, C.L. Han, Y.Y. Kang, Y.S. Wang, Z.W. Zhang, Photoluminescence properties of a novel red emitting Ba10F2(PO4)6:Eu3+ phosphor. Spectrochem. Acta A Mol. Biomol. Spectrosc. 145, 194–197 (2015)

    ADS  Google Scholar 

  16. Y. Fan, Y. Hu, L. Chen, X. Wang, G. Ju, Luminescence properties and energy transfer in the novel red emitting phosphors Ba2Ln(BO3)2Cl:Sm3+, Eu3+ (Ln = Y, Gd). Phys. B Condens. Matt. 450, 99–105 (2014)

    ADS  Google Scholar 

  17. T. Jeyakumaran, N.V. Bharathi, R. Shanmugavel, P. Sriramachandran, S. Ramaswamy, Structural, vibrational, optical and improved photoluminescence properties of Dy3+ doped Ca2KZn2V3O12 phosphors. J. Inorg. Organomet. Polym. Mater. 31(2), 695–703 (2021)

    Google Scholar 

  18. A.K. Kunti, N. Patra, S.K. Sharma, H.C. Swart, Radiative transition probability enhancement of white light emitting Dy3+ doped and K+ co-doped BaWO4 phosphors via charge compensation. J. Alloys Compd. 735, 2410–2422 (2018)

    Google Scholar 

  19. A.K. Kunti, S.K. Sharma, R.J. Choudhary, H.C. Swart, Structural and luminescence properties of laser assisted Eu3+ doped BaZrO3 thin films. J. Alloys Compd. 801, 99–111 (2019)

    Google Scholar 

  20. J. Chen, W. Cranton, M. Fihn, Handbook of Visual Display Technology (Springer, Berlin, Germany, 2016), pp.1559–1570

    Google Scholar 

  21. M. Mutailipu, K.R. Poeppelmeier, S. Pan, Borates: a rich source for optical materials. Chem. Rev. 121(3), 1130–1202 (2020)

    Google Scholar 

  22. V.K. Singh, J. Sharma, A.K. Bedyal, V. Kumar, H.C. Swart, Surface and spectral studies of Sm3+ doped Li4Ca(BO3)2 phosphors for white light emitting diodes. J. Alloys Compd. 738, 97–104 (2018)

    Google Scholar 

  23. V. Kumar, A.K. Bedyal, S.S. Pitale, O.M. Ntwaeaborwa, H.C. Swart, Synthesis, spectral and surface investigation of NaSrBO3: Sm3+ phosphor for full color down conversion in LEDs. J. Alloys Compd. 554, 214–220 (2013)

    Google Scholar 

  24. V. Kumar, M. Manhas, A.K. Bedyal, H.C. Swart, Synthesis, spectral and surface investigation of novel CaMgB2O5: Dy3+ nanophosphor for UV based white LEDs. Mater. Res. Bull. 91, 140–147 (2017)

    Google Scholar 

  25. A.K. Bedyal, D.D. Ramteke, V. Kumar, H.C. Swart, Blue photons excited highly chromatic red light emitting K3La(PO4)2: Pr3+ phosphors for white light emitting diodes. Mater. Res. Bull. 103, 173–180 (2018)

    Google Scholar 

  26. V.B. Pawade, H.C. Swart, S.J. Dhoble, Review of rare earth activated blue emission phosphors prepared by combustion synthesis. Renew. Sustain. Energy Rev. 52, 596–612 (2015)

    Google Scholar 

  27. L. Devys, G. Dantelle, G. Laurita, E. Homeyer, I. Gautier-Luneau, C. Dujardin, et al. A strategy to increase phosphor brightness application with Ce3+-doped Gd3Sc2Al3O12. J. Lumin. 190, 62–68 (2017)

  28. I. Charak, M. Manhas, A.K. Bedyal, S. Singh, A. Srivastava, H.C. Swart, V. Kumar, Structural and spectral studies of highly pure red-emitting Ca3B2O6: Eu3+ phosphors for white light emitting diodes. J. Alloys Compd. 869, 159363 (2021)

    Google Scholar 

  29. S. Kaur, A.S. Rao, M. Jayasimhadri, V.V. Jaiswal, D. Haranath, Tb3+ ion induced colour tunability in calcium aluminozincate phosphor for lighting and display devices. J. Alloys Compd. 826, 154212 (2020)

    Google Scholar 

  30. Q. Zhang, X. Wang, Z. Tang, Y. Wang, A K3ScSi2O7:Eu2+ based phosphor with broad-band NIR emission and robust thermal stability for NIR pc-LEDs. Chem. Commun. 56(34), 4644–4647 (2020)

    Google Scholar 

  31. V.R.L. Murty, M. Venkateswarlu, K. Swapna, S. Mahamuda, P.R. Rani, A.S. Rao, Physical and spectroscopic studies of Sm3+ ions doped Alumino Tungsten Borate glasses for photonic applications. Radiat. Phys. Chem. 190, 109806 (2021)

    Google Scholar 

  32. G. Liu, B. Jacquier (eds.), Spectroscopic Properties of Rare Earths in Optical Materials, vol. 83 (Springer Science & Business Media, Cham, 2006), p.261

    Google Scholar 

  33. P. Dewangan, D.P. Bisen, N. Brahme, S. Sharma, Structural characterization and luminescence properties of Dy3+ doped Ca3MgSi2O8 phosphors. J. Alloys Compd. 777, 423–433 (2019)

    Google Scholar 

  34. L. Cai, L. Ying, J. Zheng, B. Fan, R. Chen, C. Chen, Luminescent properties of Sr2B2O5: Tm3+, Na+ blue phosphor. Ceram. Int. 40(5), 6913–6918 (2014)

    Google Scholar 

  35. V.R. Panse, N.S. Kokode, A.N. Yerpude, S.J. Dhoble, Combustion synthesis of Sr2B2O5: Tb3+ green emitting phosphor for solid state lighting. Optik 127(4), 1603–1606 (2016)

    ADS  Google Scholar 

  36. J. Sun, J. Lai, J. Zhu, Z. Xia, H. Du, Luminescence properties and energy transfer investigations of Sr2B2O5:Ce3+, Tb3+ phosphors. Ceram. Int. 38(7), 5341–5345 (2012)

    Google Scholar 

  37. J. Kumar, R. Kumar, M. Singh, S. Kumar, R. Kumar, S.O. Won, A. Vij, Structural, diffuse reflectance and luminescence study of t-Mg2B2O5 nanostructures. Appl. Phys. A 127(8), 1–10 (2021)

    Google Scholar 

  38. L. Yang, Y. Wan, Y. Li, Y. Pu, Y. Huang, C. Chen, H.J. Seo, Hydrothermal synthesis, characterization, and luminescence of Ca2B2O5:RE (RE= Eu3+, Tb3+, Dy3+) nanofibers. J. Nanopart. Res. 18(4), 94 (2016)

    ADS  Google Scholar 

  39. B.V. Ratnam, M.K. Sahu, A.K. Vishwakarma, K. Jha, H.J. Woo, K. Jang, M. Jayasimhadri, Optimization of synthesis technique and luminescent properties in Eu3+-activated NaCaPO4 phosphor for solid state lighting applications. J. Lumin. 185, 99–105 (2017)

    Google Scholar 

  40. F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, Structure evaluation and highly enhanced luminescence of Dy3+-doped ZnO nanocrystals by Li+ doping via combustion method. Langmuir 20(9), 3528–3531 (2004)

    Google Scholar 

  41. T.J.B. Holland, S.A.T. Redfern, Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral. Mag. 61(404), 65–77 (1997)

    Google Scholar 

  42. H. Yin, C. Yang, Y. Gao, C. Wang, M. Li, H. Guo, Q. Tong, Fabrication and characterization of strontium-doped borate-based bioactive glass scaffolds for bone tissue engineering. J. Alloys Compd. 743, 564–569 (2018)

    Google Scholar 

  43. S.S. Rojas, K. Yukimitu, A.S.S. De Camargo, L.A.O. Nunes, A.C. Hernandes, Undoped and calcium doped borate glass system for thermoluminescent dosimeter. J. Non-Cryst. Solids 352(32–35), 3608–3612 (2006)

    ADS  Google Scholar 

  44. T. Depci, G. Ozbayoglu, A. Yilmaz, Comparison of different synthesis methods to produce lithium triborate and their effects on its thermoluminescent property. Metall. Mater. Trans. A 41(10), 2584–2594 (2010)

    Google Scholar 

  45. Z. Özdemir, G. Özbayoğlu, A. Yilmaz, Investigation of thermoluminescence properties of metal oxide doped lithium triborate. J. Mater. Sci. 42(20), 8501–8508 (2007)

    ADS  Google Scholar 

  46. E. Yildiz, E. Erdoğmuş, Investigation of luminescence properties of Pb2+-doped Sr2B2O5 phosphor. Int. J. Appl. Ceram. Technol. 15(5), 1287–1291 (2018)

    Google Scholar 

  47. Z.W. Zhang, A.J. Song, S.T. Song, J.P. Zhang, W.G. Zhang, D.J. Wang, Synthesis and luminescence properties of novel KSrPO4: Dy3+ phosphor. J. Alloys Compd. 629, 32–35 (2015)

    Google Scholar 

  48. P. Kumari, J. Manam, Structural, optical and special spectral changes of Dy3+ emissions in orthovanadates. RSC Adv. 5(130), 107575–107584 (2015)

    ADS  Google Scholar 

  49. G. Blasse, B.C. Grabmaier, Energy Transfer: Luminescent Materials (Springer, Berlin, 1994), pp.91–107

    Google Scholar 

  50. K.N. Shinde, S.J. Dhoble, H.C. Swart, K. Park. Phosphate Phosphors for Solid-State Lighting (Springer Science & Business Media, Berlin, 2012), p. 57

  51. H. Gao, P. Li, Luminescence and energy transfer of white emitting phosphor Ba3Ce(PO4)3:Dy3+. Optik 170, 272–277 (2018)

    ADS  Google Scholar 

  52. G. Blasse, Energy transfer between inequivalent Eu2+ ions. J. Solid-State Chem. 62(2), 207–211 (1986)

    ADS  Google Scholar 

  53. J.H. Nobbs, Kubelka-Munk Theory and the Prediction of Reflectance: Review of Progress in Coloration and Related Topics, vol. 15 (Society of Dyers and Colorists, UK, 1985), pp.66–75

    Google Scholar 

  54. Q.S. Liu, Z.Y. Zheng, L.Q. Cheng, X.Y. Zhang, Y. Song, J.W. Liu, T. Cui, Crystal structure and luminescent properties of Sr2B2O5:Eu2+ blue phosphors. Funct. Mater. Lett. 6(3), 1350034 (2013)

    ADS  Google Scholar 

  55. M. Grundmann, Physics of Semiconductors, vol. 11 (Springer, Berlin, 2010), pp.401–472

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charak, I., Manhas, M., Bedyal, A.K. et al. Synthesis, luminescence and photometric investigation of Sr2B2O5:Dy3+ phosphor for UV-based white LEDs. Appl. Phys. A 129, 222 (2023). https://doi.org/10.1007/s00339-023-06488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06488-2

Keywords

Navigation