Skip to main content
Log in

Structural, dielectric and Raman spectroscopy investigations of Ba1–xBi2x/3(Fe0.5Nb0.5)0.025Ti0.975O3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This research work reports the structural, dielectric, and Raman scattering studies of Ba1–xBi2x/3(Fe0.5Nb0.5)0.025Ti0.975O3 (x = 0–0.15) polycrystalline samples synthesized by the solid state reaction method. The crystalline structure, Raman, and dielectric properties were investigated. The ceramic samples whose compositions x \(\le\) 0.075 exhibit a tetragonal P4mm symmetry, while the compositions with 0.10 \(\le\) x \(\le\) 0.15 crystallize in a cubic phase with a Pm\(\overline{3 }\)m space group. Dielectric studies reveal a transition from classical to relaxor ferroelectrics with an increasing substitution rate x in Ba1–xBi2x/3(Fe0.5Nb0.5)0.025Ti0.975O3 ceramics. The relaxor behavior observed for 0.10 \(\le\) x \(\le\) 0.15 was highlighted by a significant dielectric anomaly, in which the maximum temperature Tm was substantially dependent on frequency and went towards low temperature with rising Bi. For the compound x = 0.15, the maximum of \(\varepsilon_{{\text{r}}}^{^{\prime}}\) is around 3000 at room temperature (293 K) and the value of ΔTm is 33 K. These values of \(\varepsilon_{{\text{r}}}^{^{\prime}}\) and ΔTm are very important for relaxor materials by comparing them with those that are already published in the literature. The relaxor behavior was modeled using the Vogel–Fulcher relation. The Raman spectroscopy analysis demonstrates that the influence of the rate of Ba2+ substitution by Bi3+ may be shown via E (TO2) and A1 (TO3) modes. In the same line, the substantial displacement at the off-centered A location can be attributed to the Bi impurity causing the formation of polar clusters, which drove the transition from classical to relaxor ferroelectrics. This is supported by the stereochemical effect of the 6s2 lone pair electrons of Bi3+ as well as the significant ionic radius difference between Ba2+ and Bi3+. Furthermore, a thermal study of Raman spectral response to composition backs up our dielectric findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Uchino, Ferroelectric Devices, 2nd edn. (CRC Press, 2009), p.367

    Google Scholar 

  2. Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, R. Von Der Mühll, L. Bih, Effect of the substitution of titanium by iron and niobium on the structure and dielectric properties in BaTi1-x(Fe0.5Nb0.5)xO3 solid solution. J. Alloys Compd. 427, 260–266 (2007)

    Article  Google Scholar 

  3. L.M. Chang, Y.D. Hou, M.K. Zhu, X.-M. Song, H. Yan, Effect of addition on the dielectric and piezoelectric responses in the low-temperature sintered 0.5PZN-0.5PZT systems. J. Appl. Phys. 101, 034101 (2007)

    Article  ADS  Google Scholar 

  4. N.N. Wu, Y.D. Hou, C. Wang, M.K. Zhu, X.M. Song, H. Yan, Effect of sintering temperature on direct relaxation and Raman scattering of system. J. Appl. Phys. 105, 084107 (2009)

    Article  ADS  Google Scholar 

  5. G.A. Smolenskii, V.A. Isupov, Dokl. Akad. Nauk SSSR. 9, 653 (1954)

    Google Scholar 

  6. D.A. Tenne, A. Soukiassian, X. Choosuwan, R. Guo, A.S. Bhalla, Lattice dynamics in BaxSr1-xTiO3 single crystals: a Raman study. Phys. Rev. B. 70, 174302 (2004)

    Article  ADS  Google Scholar 

  7. R. Seshadri, N.A. Hill, Chem. Mater. 13, 2892 (2001)

    Article  Google Scholar 

  8. D.S. Keeble, E.R. Barney, D.A. Keen, M.G. Tucker, J. Kreisel, P.A. Thomas, Advan. Funct. Mater. 23, 185 (2013)

    Article  Google Scholar 

  9. D. Maurya, S. Priya, Int. Ferroelectr. 166, 186 (2015)

    Article  ADS  Google Scholar 

  10. N. Sareecha, W.A. Shah, M.L. Mirza, A. Maqsood, M.S. Awan, Phys. B Cond. Mat. 530, 283 (2018)

    Article  ADS  Google Scholar 

  11. A.K. Mahapatra, T. Badapanda, S. Sarangi, Appl. Phys. A 127, 593 (2021)

    Article  ADS  Google Scholar 

  12. A.S. Attar, E.S. Sichani, S. Sharaf, J. Mater. Res. Tech. 6, 108 (2017)

    Article  Google Scholar 

  13. I. Margaritescu, K. Datta, B. Mihailova, Multistep coupling of preexisting local ferroic distortions in PbTiO3 above the Curie temperature. J. Phys. Condens. Matter 30, 435401 (2018)

    Article  ADS  Google Scholar 

  14. T. Roisnel, Program FullProf, Laboratoire de Chimie du Solide et Inorganique Moléculaire 4MR6511, CNRS-Université de Rennes I, version 3.70, May 2004, LLB-LCSIM, (2005)

  15. J. Rodriguez-Carvajal, Program FullProf, Laboratoire Léon Brillouin (CEA-CNRS), version 3.70, May 2004, LLB-LCSIM (2005)

  16. S. Wu, X. Wei, X. Wang, H. Yang, S. Gao, J. Mater. Sci. Tech. 26, 472 (2010)

    Article  Google Scholar 

  17. A. Kholodkova, A. Smirnov, M. Danchevskaya, Y. Ivakin, G. Muravieva, S. Ponomarev, V. Kolesov, Inorgan. 8(8), 1 (2020)

    Google Scholar 

  18. Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys. 75, 454 (1994)

    Article  ADS  Google Scholar 

  19. Z.Q. Zhuang, M.J. Haun, S.J. Jang, L.E. Cross, Ieee T Ultrason. Ferr. 36, 413 (1989)

    Article  Google Scholar 

  20. F. Bahri, H. Khemakhem, A. Simon, R. Von Der Mühll, J. Ravez, Dielectric and pyroelectric studies on the Ba1-3aBi2aTiO3 classical and relaxor ferroelectric ceramics. Solid State Sci. 5, 1235–1238 (2003)

    Article  ADS  Google Scholar 

  21. G. Singla, K. Singh, Dielectric properties of Ti substituted Bi2-xTixO3+x/2 ceramics. Ceram. Int. 39, 1785–1792 (2013)

    Article  Google Scholar 

  22. H. Khelifi, M. Zannen, N. Abdelmoula, D. Mezzane, A. Maalej, H. Khemakhem, M. Es-Souni, Dielectric and magnetic properties of (1-x)BiFeO3-xBa0.8Sr0.2TiO3 ceramics. Ceram. Int. 38, 5993–5997 (2012)

    Article  Google Scholar 

  23. Y.D. Juang, M.L. Hu, W.S. Tse, Temperature-dependent Raman scattering studies of Li0.02Na0.98NbO3. J. Appl. Phys. 76, 3746 (1994)

    Article  ADS  Google Scholar 

  24. A. Simon, J. Ravez, M. Maglione, J. Phys. Condens. Matter 16, 963–970 (2004)

    Article  ADS  Google Scholar 

  25. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectr. Lett. 44, 55 (1982)

    Article  ADS  Google Scholar 

  26. R. Dittmer, Lead-Free Piezoceramics-Ergodic and Nonergodic Relaxor Ferro-electrics Based on Bismuth Sodium Titanate, Doctor of Engineering, Materials and Geosciences, TU Darmstadt, (2013)

  27. R.A. Cowley, S.N. Gvasaliya, S.G. Lushnikov, B. Roessli, G.M. Rotaru, Relaxing with relaxors: a review of relaxor ferroelectrics. Adv. Phys. 60, 229–327 (2011)

    Article  ADS  Google Scholar 

  28. A.A. Bokov, Z.G. Ye, Recent Progress in Relaxor Ferroelectrics with Perovskite Structure, in Frontiers of Ferroelectricity (Springer US, 2007), pp.31–52

    Google Scholar 

  29. U. Weber, G. Greuel, U. Boettger, S. Weber, D. Hennings, R. Waser, J. Am. Ceram. Soc. 84, 759 (2001)

    Article  Google Scholar 

  30. G. Fulcher, Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925)

    Article  Google Scholar 

  31. H. Vogel, The temperature dependence law of the viscosity of fluids. Z. Phys. 22, 645 (1921)

    Google Scholar 

  32. D. Viehland, W.-H. Huang, Dielectric dispersion of strontium barium niobate. Ferroelectrics 158, 301–306 (1994)

    Article  ADS  Google Scholar 

  33. Y.-S. Seo, J.S. Ahn, Pressure dependence of the phonon spectrum in BaTiO3 polytypes studied by ab initio calculations. Phys. Rev. B 88, 014114 (2013)

    Article  ADS  Google Scholar 

  34. A.-M. Welsch, B.J. Maier, B. Mihailova, R.J. Angel, J. Zhao, C. Paulmann, J.M. Engel, M. Gospodinov, V. Marinova, U. Bismayer, Z. Kristallogr. 226, 126 (2011)

    Article  Google Scholar 

  35. N. Waeselmann, B. Mihailova, B.J. Maier, C. Paulmann, M. Gospodinov, V. Marinova, U. Bismayer, U Phys. Rev. B 83, 214104 (2011)

    Article  ADS  Google Scholar 

  36. K. Datta, R.B. Neder, J. Chen, J.C. Neuefeind, B. Mihailova, Sci. Rep. 7, 471 (2017)

    Article  ADS  Google Scholar 

  37. F. Bahri, H. Khemakhem, M. Gargouri, A. Simon, R. Von der Mühll, J. Ravez, Dielectric and Raman studies on the solid solution (1–x)BaTiO3/xNaNbO3 ceramics. Solid State Sci. 5, 1229–1234 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hassen Khedhri.

Ethics declarations

Conflict of interest

No one of the authors listed in this manuscript dispose of any conflict of interest through this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khedhri, M.H., Abdelmoula, N. & Khemakhem, H. Structural, dielectric and Raman spectroscopy investigations of Ba1–xBi2x/3(Fe0.5Nb0.5)0.025Ti0.975O3 ceramics. Appl. Phys. A 129, 202 (2023). https://doi.org/10.1007/s00339-023-06484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06484-6

Keywords

Navigation