Skip to main content
Log in

Progress in group-IV semiconductor nanowires based photonic devices

  • S.I. : 50th Anniversary of Applied Physics
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Despite the dominance in consumer electronics, the use of group-IV semiconductors and their heterostructures is still limited for photonic devices, attributed to the poor emission quantum efficiency in Si and Ge due to their indirect bandgap nature. This has posed serious bottlenecks towards the rapid progress of integrated silicon photonics. However, the recent advances of low-dimensional Si-based heterostructures have shown enormous potential in this direction owing to the significant modification of band structures, leading to improved optical and electronic properties over their bulk counterparts. In this regard, one dimensional Si and Ge nanowires have witnessed an explosion of research interests because of their potential in several promising applications for ultra-compact, silicon-compatible, and functional optoelectronic devices. Novel device architectures integrated with single nanowires and nanowire array geometries have been actively studied and developed. This review presents recent advances in the study of group-IV semiconductor nanowires and their heterostructure-based photonic devices like photodetectors, solar cells and light-emitting diodes etc. Several novel but rational device designs are presented and discussed here, from single nanowire for extraordinary performance to nanowire array heterostructures for large area applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding authors on reasonable request.

References

  1. G. Conibeer, Mater. Today 10, 42 (2007)

    Google Scholar 

  2. N. Daldosso, L. Pavesi, Laser Photonics Rev. 3, 508 (2009)

    ADS  Google Scholar 

  3. R. Rurali, Rev. Mod. Phys. 82, 427 (2010)

    ADS  Google Scholar 

  4. M. Amato, M. Palummo, R. Rurali, S. Ossicini, Chem. Rev. 114, 1371 (2014)

    Google Scholar 

  5. S.K. Ray, A.K. Katiyar, A.K. Raychaudhuri, Nanotechnology 28, 1 (2017)

    Google Scholar 

  6. S.K. Ray, S. Maikap, W. Banerjee, S. Das, J. Phys. D. Appl. Phys. 46, 153001 (2013)

    ADS  Google Scholar 

  7. A. Sarkar, R. Bar, S. Singh, R.K. Chowdhury, S. Bhattacharya, A.K. Das, S.K. Ray, Appl. Phys. Lett. 116, 231105 (2020)

    ADS  Google Scholar 

  8. X. Sun, J. Liu, L.C. Kimerling, J. Michel, Appl. Phys. Lett. 95, 1 (2009)

    Google Scholar 

  9. S. Das, K. Das, R.K. Singha, S. Manna, A. Dhar, S.K. Ray, A.K. Raychaudhuri, Nanoscale Res. Lett. 6, 1 (2011)

    Google Scholar 

  10. R.K. Singha, S. Manna, S. Das, A. Dhar, S.K. Ray, Appl. Phys. Lett. 96, 233113 (2010)

    ADS  Google Scholar 

  11. S. Manna, R. Aluguri, S. Das, R. Singha, S.K. Ray, Opt. Express 21, 28219 (2013)

    ADS  Google Scholar 

  12. R. Aluguri, S. Das, S. Manna, R.K. Singha, S.K. Ray, Opt. Mater. (Amst). 34, 1430 (2012)

    ADS  Google Scholar 

  13. S. Manna, N. Prtljaga, S. Das, N. Daldosso, S.K. Ray, L. Pavesi, Nanotechnology 23, 0 (2012)

    Google Scholar 

  14. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    ADS  Google Scholar 

  15. F. Priolo, T. Gregorkiewicz, M. Galli, T.F. Krauss, Nat. Nanotechnol. 9, 19 (2014)

    ADS  Google Scholar 

  16. M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, H.-E. Nilsson, W. Xiong, B. Xu, Y. Li, H.H. Radamson, Nanomaterials 10, 2215 (2020)

    Google Scholar 

  17. Z. Qi, H. Sun, M. Luo, Y. Jung, D. Nam, J. Phys. Condens. Matter 30, 334004 (2018)

    Google Scholar 

  18. J.N. Aqua, I. Berbezier, L. Favre, T. Frisch, A. Ronda, Phys. Rep. 522, 59 (2013)

    ADS  Google Scholar 

  19. Y. Yu, X. Wang, Semicond. Semimetals 94, 297–368 (2016)

    Google Scholar 

  20. W. Chen, P.R.I. Cabarrocas, Nanotechnology 30, 194002 (2019)

    ADS  Google Scholar 

  21. S. Jeong, E.C. Garnett, S. Wang, Z. Yu, S. Fan, M.L. Brongersma, M.D. McGehee, Y. Cui, Nano Lett. 12, 2971 (2012)

    ADS  Google Scholar 

  22. J. Zhu, C.M. Hsu, Z. Yu, S. Fan, Y. Cui, Nano Lett. 10, 1979 (2010)

    ADS  Google Scholar 

  23. P. Campbell, M.A. Green, J. Appl. Phys. 62, 243 (1987)

    ADS  Google Scholar 

  24. S. Das, R.K. Singha, A. Dhar, S.K. Ray, A. Anopchenko, N. Daldosso, L. Pavesi, J. Appl. Phys. 110, 024310 (2011)

    ADS  Google Scholar 

  25. A.K. Katiyar, A. Grimm, R. Bar, J. Schmidt, T. Wietler, H.J. Osten, S.K. Ray, Nanotechnology 27, 435204 (2016)

    Google Scholar 

  26. S. Singh, A.K. Katiyar, A. Sarkar, P.K. Shihabudeen, A.R. Chaudhuri, D.K. Goswami, S.K. Ray, Nanotechnology 31, 115206 (2020)

    ADS  Google Scholar 

  27. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007)

    ADS  Google Scholar 

  28. L. Hu, G. Chen, A.S.M.E. Int, Mech. Eng. Congr. Expo. Proc. 8, 1285 (2007)

    Google Scholar 

  29. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)

    ADS  Google Scholar 

  30. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149 (2003)

    ADS  Google Scholar 

  31. J.H. Chua, R.E. Chee, A. Agarwal, M.W. She, G.J. Zhang, Anal. Chem. 81, 6266 (2009)

    Google Scholar 

  32. F. Patolsky, G. Zheng, C.M. Lieber, Nat. Protoc. 1, 1711 (2006)

    Google Scholar 

  33. F. Qian, S. Gradečak, Y. Li, C.Y. Wen, C.M. Lieber, Nano Lett. 5, 2287 (2005)

    ADS  Google Scholar 

  34. O. Hayden, A.B. Greytak, D.C. Bell, Adv. Mater. 17, 701 (2005)

    Google Scholar 

  35. E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E. Ozbay, R. Turan, H.E. Unalan, Appl. Phys. Lett. 103, 083114 (2013)

    ADS  Google Scholar 

  36. M. Ahmad, K. Rasool, M.A. Rafiq, M.M. Hasan, Appl. Phys. Lett. 101, 223103 (2012)

    ADS  Google Scholar 

  37. S.J. Choi, Y.C. Lee, M.L. Seol, J.H. Ahn, S. Kim, D. Il Moon, J.W. Han, S. Mann, J.W. Yang, Y.K. Choi, Adv. Mater. 23, 3979 (2011)

    Google Scholar 

  38. R. Agarwal, Small 4, 1872 (2008)

    Google Scholar 

  39. B.M. Kayes, H.A. Atwater, N.S. Lewis, J. Appl. Phys. 97, 114302 (2005)

    ADS  Google Scholar 

  40. G. Brönstrup, N. Jahr, C. Leiterer, A. Csäki, W. Fritzsche, S. Christiansen, ACS Nano 4, 7113 (2010)

    Google Scholar 

  41. L. Cao, P. Fan, A.P. Vasudev, J.S. White, Z. Yu, W. Cai, J.A. Schuller, S. Fan, M.L. Brongersma, Nano Lett. 10, 439 (2010)

    ADS  Google Scholar 

  42. L. Cao, J.S. White, J.S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Nat. Mater. 8, 643 (2009)

    ADS  Google Scholar 

  43. J.K. Hyun, L.J. Lauhon, Nano Lett. 11, 2731 (2011)

    ADS  Google Scholar 

  44. K.Q. Peng, X. Wang, X.L. Wu, S.T. Lee, Nano Lett. 9, 3704 (2009)

    ADS  Google Scholar 

  45. S. Kim, J.F. Cahoon, Acc. Chem. Res. 52, 3511 (2019)

    Google Scholar 

  46. C. Zhang, Z. Yang, K. Wu, X. Li, Nano Energy 27, 611 (2016)

    Google Scholar 

  47. W. Liu, Y. Wang, X. Guo, J. Song, X. Wang, Y. Yi, Nanomaterials 10, 1 (2020)

    Google Scholar 

  48. S.K. Kim, R.W. Day, J.F. Cahoon, T.J. Kempa, K.D. Song, H.G. Park, C.M. Lieber, Nano Lett. 12, 4971 (2012)

    ADS  Google Scholar 

  49. S.K. Kim, K.D. Song, T.J. Kempa, R.W. Day, C.M. Lieber, H.G. Park, ACS Nano 8, 3707 (2014)

    Google Scholar 

  50. S. Samanta, K. Das, A.K. Raychaudhuri, Nanoscale Res. Lett. 8, 1 (2013)

    Google Scholar 

  51. V. Dhyani, A. Jakhar, J. Wellington, S. Das, J. Phys. D. Appl. Phys. 52, 425103 (2019)

    ADS  Google Scholar 

  52. K. Das, S. Mukherjee, S. Manna, S.K. Ray, A.K. Raychaudhuri, Nanoscale 6, 11232 (2014)

    ADS  Google Scholar 

  53. J. Bae, H. Kim, X.M. Zhang, C.H. Dang, Y. Zhang, Y. Jin Choi, A. Nurmikko, Z. Lin Wang, Nanotechnology 21, 095502 (2010)

    ADS  Google Scholar 

  54. Y. Yang, W. Guo, J. Qi, J. Zhao, Y. Zhang, Appl. Phys. Lett. 97, 98 (2010)

    Google Scholar 

  55. Y. Ahn, J. Dunning, J. Park, Nano Lett. 5, 1367 (2005)

    ADS  Google Scholar 

  56. M.H.M. Van Weert, N. Akopian, F. Kelkensberg, U. Perinetti, M.P. Van Kouwen, J.G. Rivas, M.T. Borgström, R.E. Algra, M.A. Verheijen, E.P.A.M. Bakkers, L.P. Kouwenhoven, V. Zwiller, Small 5, 2134 (2009)

    Google Scholar 

  57. Y. Guan, G. Cao, X. Li, Appl. Phys. Lett. 118, 153904 (2021)

    ADS  Google Scholar 

  58. C.J. Kim, H.S. Lee, Y.J. Cho, K. Kang, M.H. Jo, Nano Lett. 10, 2043 (2010)

    ADS  Google Scholar 

  59. L. Cao, J.S. Park, P. Fan, B. Clemens, M.L. Brongersma, Nano Lett. 10, 1229 (2010)

    ADS  Google Scholar 

  60. C. Yan, N. Singh, H. Cai, C.L. Gan, P.S. Lee, A.C.S. Appl, Mater. Interfaces 2, 1794 (2010)

    Google Scholar 

  61. S. Sett, A. Ghatak, D. Sharma, G.V.P. Kumar, A.K. Raychaudhuri, J. Phys. Chem. C 122, 8564 (2018)

    Google Scholar 

  62. S. Mukherjee, K. Das, S. Das, S.K. Ray, ACS Photonics 5, 4170 (2018)

    Google Scholar 

  63. P. Staudinger, M. Sistani, J. Greil, E. Bertagnolli, A. Lugstein, Nano Lett. 18, 5030 (2018)

    ADS  Google Scholar 

  64. U. Otuonye, H.W. Kim, W.D. Lu, Appl. Phys. Lett. 110, 173104 (2017)

    ADS  Google Scholar 

  65. H.Y. Hui, M. De La Mata, J. Arbiol, M.A. Filler, Chem. Mater. 29, 3397 (2017)

    Google Scholar 

  66. Y. Zhao, H. Ma, T. Dong, J. Wang, L. Yu, J. Xu, Y. Shi, K. Chen, P. Roca I Cabarrocas, Nano Lett. 18, 6931 (2018)

    ADS  Google Scholar 

  67. C. Yu, Z. Huang, G. Lin, Y. Mao, H. Hong, L. Zhang, Y. Zhao, J. Wang, W. Huang, S. Chen, C. Li, J. Phys. D. Appl. Phys. 53, 125103 (2020)

    ADS  Google Scholar 

  68. Y. Zhao, L. Li, S. Liu, J. Wang, J. Xu, Y. Shi, K. Chen, P. Roca Cabarrocas, L. Yu, Nanotechnology 31, 145602 (2020)

    ADS  Google Scholar 

  69. L. Yu, P.J. Alet, G. Picardi, P. Roca I Cabarrocas, Phys. Rev. Lett. 102, 2 (2009)

    Google Scholar 

  70. J.W. John, V. Dhyani, S. Singh, A. Jakhar, A. Sarkar, S. Das, S.K. Ray, Nanotechnology 32, 315205 (2021)

    ADS  Google Scholar 

  71. S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J.M. Hartmann, H. Sigg, J. Faist, D. Buca, D. Grützmacher, Nat. Photonics 9, 88 (2015)

    ADS  Google Scholar 

  72. A.C. Meng, M.R. Braun, Y. Wang, S. Peng, W. Tan, J.Z. Lentz, M. Xue, A. Pakzad, A.F. Marshall, J.S. Harris, W. Cai, P.C. McIntyre, Mater. Today 40, 101 (2020)

    Google Scholar 

  73. S. Assali, A. Dijkstra, A. Li, S. Koelling, M.A. Verheijen, L. Gagliano, N. Von Den Driesch, D. Buca, P.M. Koenraad, J.E.M. Haverkort, E.P.A.M. Bakkers, Nano Lett. 17, 1538 (2017)

    ADS  Google Scholar 

  74. Y. Yang, X. Wang, C. Wang, Y. Song, M. Zhang, Z. Xue, S. Wang, Z. Zhu, G. Liu, P. Li, L. Dong, Y. Mei, P.K. Chu, W. Hu, J. Wang, Z. Di, Nano Lett. 20, 3872 (2020)

    ADS  Google Scholar 

  75. S. Biswas, J. Doherty, D. Saladukha, Q. Ramasse, D. Majumdar, M. Upmanyu, A. Singha, T. Ochalski, M.A. Morris, J.D. Holmes, Nat. Commun. 7, 11405 (2016)

    ADS  Google Scholar 

  76. M.S. Seifner, A. Dijkstra, J. Bernardi, A. Steiger-Thirsfeld, M. Sistani, A. Lugstein, J.E.M. Haverkort, S. Barth, ACS Nano 13, 8047 (2019)

    Google Scholar 

  77. A.C. Meng, C.S. Fenrich, M.R. Braun, J.P. McVittie, A.F. Marshall, J.S. Harris, P.C. McIntyre, Nano Lett. 16, 7521 (2016)

    ADS  Google Scholar 

  78. L. Luo, S. Assali, M.R.M. Atalla, S. Koelling, A. Attiaoui, G. Daligou, S. Martí, J. Arbiol, O. Moutanabbir, ACS Photonics 9, 914 (2022)

    Google Scholar 

  79. S. Singh, S. Mukherjee, S. Mukherjee, S. Assali, L. Luo, S. Das, O. Moutanabbir, S.K. Ray, Appl. Phys. Lett. 120, 0 (2022)

    Google Scholar 

  80. C. Soci, A. Zhang, X.Y. Bao, H. Kim, Y. Lo, D. Wang, J. Nanosci. Nanotechnol. 10, 1430 (2010)

    Google Scholar 

  81. A.K. Katiyar, S. Mukherjee, M. Zeeshan, S.K. Ray, A.K. Raychaudhuri, A.C.S. Appl, Mater. Interfaces 7, 23445 (2015)

    Google Scholar 

  82. J.P. Zheng, K.L. Jiao, W.P. Shen, W.A. Anderson, H.S. Kwok, Appl. Phys. Lett. 61, 459 (1992)

    ADS  Google Scholar 

  83. H.D. Um, S.A. Moiz, K.T. Park, J.Y. Jung, S.W. Jee, C.H. Ahn, D.C. Kim, H.K. Cho, D.W. Kim, J.H. Lee, Appl. Phys. Lett. 98, 2009 (2011)

    Google Scholar 

  84. H. Kang, J. Park, T. Choi, H. Jung, K.H. Lee, S. Im, H. Kim, Appl. Phys. Lett. 100, 041117 (2012)

    ADS  Google Scholar 

  85. A. Mondal, K. Bhowmik, J.C. Dhar, N.K. Singh, T. Goswami, J. Nanosci. Nanotechnol. 14, 5390 (2014)

    Google Scholar 

  86. G. Akgul, F.A. Akgul, E. Mulazimoglu, H.E. Unalan, R. Turan, J. Phys. D. Appl. Phys. 47, 065106 (2014)

    ADS  Google Scholar 

  87. Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, J.L. Sun, A.C.S. Appl, Mater. Interfaces 6, 20887 (2014)

    Google Scholar 

  88. J. Xu, Y. Cao, J. Wei, J.-L. Sun, J. Xu, J. He, Mater. Res. Express 1, 015002 (2013)

    ADS  Google Scholar 

  89. S. Manna, S. Das, S.P. Mondal, R. Singha, S.K. Ray, J. Phys. Chem. C 116, 7126 (2012)

    Google Scholar 

  90. Y. Jiang, C. Li, W. Cao, Y. Jiang, S. Shang, C. Xia, Phys. Chem. Chem. Phys. 17, 16784 (2015)

    Google Scholar 

  91. M. Kulakci, T. Colakoglu, B. Ozdemir, M. Parlak, H.E. Unalan, R. Turan, Nanotechnology 24, 375203 (2013)

    Google Scholar 

  92. C. Zhao, Z. Liang, M. Su, P. Liu, W. Mai, W. Xie, A.C.S. Appl, Mater. Interfaces 7, 25981 (2015)

    Google Scholar 

  93. S. Singh, A. Sarkar, D.K. Goswami, S.K. Ray, A.C.S. Appl, Energy Mater. 4, 4090 (2021)

    Google Scholar 

  94. A. Sarkar, S. Mukherjee, A.K. Das, S.K. Ray, Nanotechnology 30, 485202 (2019)

    Google Scholar 

  95. J. Mao, B. Zhang, Y. Shi, X. Wu, Y. He, D. Wu, J. Jie, C.S. Lee, X. Zhang, Adv. Funct. Mater. 32, 1 (2022)

    Google Scholar 

  96. C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, S.-H. Yu, ACS Nano 8, 4015 (2014)

    Google Scholar 

  97. L.B. Luo, L.H. Zeng, C. Xie, Y.Q. Yu, F.X. Liang, C.Y. Wu, L. Wang, J.G. Hu, Sci. Rep. (2014). https://doi.org/10.1038/srep03914

    Article  Google Scholar 

  98. J.-Q. Liu, Y. Gao, G.-A. Wu, X.-W. Tong, C. Xie, L.-B. Luo, L. Liang, Y.-C. Wu, A.C.S. Appl, Mater. Interfaces 10, 27850 (2018)

    Google Scholar 

  99. S. Das, V. Dhyani, Y.M. Georgiev, D.A. Williams, Appl. Phys. Lett. 108, 063113 (2016)

    ADS  Google Scholar 

  100. S.L. Tan, X. Zhao, K. Chen, K.B. Crozier, Y. Dan, Appl. Phys. Lett. 109, 033505 (2016)

    ADS  Google Scholar 

  101. Z. Sun, Z. Shao, X. Wu, T. Jiang, N. Zheng, J. Jie, Cryst. Eng. Commun. 18, 3919 (2016)

    Google Scholar 

  102. G. Lin, D. Liang, C. Yu, H. Hong, Y. Mao, C. Li, S. Chen, Opt. Express 27, 32801 (2019)

    ADS  Google Scholar 

  103. L. Chen, W. Tian, L. Min, F. Cao, L. Li, Adv. Opt. Mater. 7, 1900023 (2019)

    Google Scholar 

  104. S. An, Y. Liao, S. Shin, M. Kim, Adv. Mater. Technol. 7, 1 (2022)

    Google Scholar 

  105. https://www.Newport.Com/p/818-SL-L-FC--DB (2022).

  106. H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P.C. Grant, J.M. Grant, S. Al-Kabi, G. Sun, R.A. Soref, J. Tolle, Y.H. Zhang, W. Du, B. Li, M. Mortazavi, S.Q. Yu, ACS Photonics 6, 2807 (2019)

    Google Scholar 

  107. S.P. Mondal, S.K. Ray, Appl. Phys. Lett. 94, 223119 (2009)

    ADS  Google Scholar 

  108. C. Battaglia, A. Cuevas, S. De Wolf, Energy Environ. Sci. 9, 1552 (2016)

    Google Scholar 

  109. R. Ghosh, P.K. Giri, Sci. Adv. Today 2, 25230 (2016)

    Google Scholar 

  110. L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Adv. Phys. X 4, 1548305 (2019)

    Google Scholar 

  111. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, K. Bothe, D. Hinken, M. Rauer, X. Hao, Prog. Photovoltaics Res. Appl. 30, 687 (2022)

    Google Scholar 

  112. S. Singh, A.K. Katiyar, A. Midya, A. Ghorai, S.K. Ray, Nanotechnology 28, 435704 (2017)

    ADS  Google Scholar 

  113. M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filier, M.C. Putnam, N.S. Lewis, H.A. Atwater, Nano Lett. 8, 710 (2008)

    ADS  Google Scholar 

  114. J.H. Yun, Y.C. Park, J. Kim, H.J. Lee, W.A. Anderson, J. Park, Nanoscale Res. Lett. 6, 1 (2011)

    Google Scholar 

  115. T.J. Kempa, J.F. Cahoon, S.K. Kim, R.W. Day, D.C. Bell, H.G. Park, C.M. Lieber, Proc. Natl. Acad. Sci. U. S. A. 109, 1407 (2012)

    ADS  Google Scholar 

  116. T.J. Kempa, B. Tian, D.R. Kim, H. Jinsong, Z. Xiaolin, C.M. Lieber, Nano Lett. 8, 3456 (2008)

    ADS  Google Scholar 

  117. R. Saive, Prog. Photovoltaics Res. Appl. 29, 1125 (2021)

    Google Scholar 

  118. K.E. Bean, IEEE Trans. Electron Devices 25, 1185 (1978)

    ADS  Google Scholar 

  119. K. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, J. Zhu, Small 1, 1062 (2005)

    Google Scholar 

  120. H. Fang, X. Li, S. Song, Y. Xu, J. Zhu, Nanotechnology 19, 225703 (2008)

    Google Scholar 

  121. J. He, M.A. Hossain, H. Lin, W. Wang, S.K. Karuturi, B. Hoex, J. Ye, P. Gao, J. Bullock, Y. Wan, ACS Nano 13, 6356 (2019)

    Google Scholar 

  122. E. Garnett, P. Yang, Nano Lett. 10, 1082 (2010)

    ADS  Google Scholar 

  123. D.R. Kim, C.H. Lee, P.M. Rao, I.S. Cho, X. Zheng, Nano Lett. 11, 2704 (2011)

    ADS  Google Scholar 

  124. M. Gharghi, E. Fathi, B. Kante, S. Sivoththaman, X. Zhang, Nano Lett. 12, 6278 (2012)

    ADS  Google Scholar 

  125. M.M. Adachi, M.P. Anantram, K.S. Karim, Sci. Rep. 3, 1546 (2013)

    ADS  Google Scholar 

  126. K.T. Park, H.J. Kim, M.J. Park, J.H. Jeong, J. Lee, D.G. Choi, J.H. Lee, J.H. Choi, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  127. F. Zhang, B. Sun, T. Song, X. Zhu, S. Lee, Chem. Mater. 23, 2084 (2011)

    Google Scholar 

  128. S.-H. Tsai, H.-C. Chang, H.-H. Wang, S.-Y. Chen, C.-A. Lin, S.-A. Chen, Y.-L. Chueh, J.-H. He, ACS Nano 5, 9501 (2011)

    Google Scholar 

  129. S.C. Shiu, J.J. Chao, S.C. Hung, C.L. Yeh, C.F. Lin, Chem. Mater. 22, 3108 (2010)

    Google Scholar 

  130. B. Ozdemir, M. Kulakci, R. Turan, H. EmrahUnalan, Appl. Phys. Lett. 99, 3 (2011)

    Google Scholar 

  131. W. Lu, C. Wang, W. Yue, L. Chen, Nanoscale 3, 3631 (2011)

    ADS  Google Scholar 

  132. X. Gong, Y. Jiang, M. Li, H. Liu, H. Ma, RSC Adv. 5, 10310 (2015)

    ADS  Google Scholar 

  133. Y.P. Hsieh, H.Y. Chen, M.Z. Lin, S.C. Shiu, M. Hofmann, M.Y. Chern, X. Jia, Y.J. Yang, H.J. Chang, H.M. Huang, S.C. Tseng, L.C. Chen, K.H. Chen, C.F. Lin, C. Te Liang, Y.F. Chen, Nano Lett. 9, 1839 (2009)

    ADS  Google Scholar 

  134. Y.F. Chan, W. Su, C.X. Zhang, Z.L. Wu, Y. Tang, X.Q. Sun, H.J. Xu, Opt. Express 20, 24280 (2012)

    ADS  Google Scholar 

  135. A. Irrera, P. Artoni, F. Iacona, E.F. Pecora, G. Franzò, M. Galli, B. Fazio, S. Boninelli, F. Priolo, Nanotechnology 23, 075204 (2012)

    ADS  Google Scholar 

  136. A.K. Katiyar, A.K. Sinha, S. Manna, S.K. Ray, A.C.S. Appl, Mater. Interfaces 6, 15007 (2014)

    Google Scholar 

  137. A. Sarkar, A.K. Katiyar, S. Mukherjee, S. Singh, S.K. Singh, A.K. Das, S.K. Ray, A.C.S. Appl, Electron. Mater. 1, 25 (2019)

    Google Scholar 

  138. E.M.T. Fadaly, A. Dijkstra, J.R. Suckert, D. Ziss, M.A.J. van Tilburg, C. Mao, Y. Ren, V.T. van Lange, K. Korzun, S. Kölling, M.A. Verheijen, D. Busse, C. Rödl, J. Furthmüller, F. Bechstedt, J. Stangl, J.J. Finley, S. Botti, J.E.M. Haverkort, E.P.A.M. Bakkers, Nature 580, 205 (2020)

    ADS  Google Scholar 

  139. S. Manna, A. Katiyar, R. Aluguri, S.K. Ray, J. Phys. D. Appl. Phys. 48, 215103 (2015)

    ADS  Google Scholar 

  140. J. Greil, E. Bertagnolli, B. Salem, T. Baron, P. Gentile, A. Lugstein, Appl. Phys. Lett. 111, 223103 (2017)

    Google Scholar 

  141. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    ADS  Google Scholar 

  142. R. Soref, D. Buca, S.-Q. Yu, Opt. Photonics News 27, 32 (2016)

    ADS  Google Scholar 

  143. O. Moutanabbir, S. Assali, X. Gong, E. O’Reilly, C.A. Broderick, B. Marzban, J. Witzens, W. Du, S.Q. Yu, A. Chelnokov, D. Buca, D. Nam, Appl. Phys. Lett. 118, 110502 (2021)

    ADS  Google Scholar 

  144. D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, Q. Wang, Appl. Phys. Lett. 102, 141111 (2013)

    ADS  Google Scholar 

  145. S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, Y.-C. Yeo, Opt. Express 27, 5798 (2019)

    ADS  Google Scholar 

  146. S. Xu, K. Han, Y.-C. Huang, Y. Kang, S. Masudy-Panah, Y. Wu, D. Lei, Y. Zhao, X. Gong, and Y.-C. Yeo, in 2019 Symp. VLSI Technol. (IEEE, 2019), pp. T176–T177.

  147. H. Wang, Y. Chen, J. Zhang, G. Zhang, Y. Huang, and X. Gong, in 2021 Symp. VLSI Circuits (IEEE, 2021), pp. 1–2.

  148. S. Mahato, A. Ghorai, S.K. Srivastava, M. Modak, S. Singh, S.K. Ray, Adv. Energy Mater. 10, 2001305 (2020)

    Google Scholar 

  149. S. Ghose, S. Singh, T.S. Bhattacharya, A.C.S. Appl, Mater. Interfaces 12, 7727 (2020)

    Google Scholar 

  150. S. Gupta, B. Magyari-Köpe, Y. Nishi, K.C. Saraswat, J. Appl. Phys. 113, 073707 (2013)

    ADS  Google Scholar 

  151. T.R. Harris, M.-Y. Ryu, Y.K. Yeo, B. Wang, C.L. Senaratne, J. Kouvetakis, J. Appl. Phys. 120, 085706 (2016)

    ADS  Google Scholar 

  152. S. Wirths, D. Buca, S. Mantl, Prog. Cryst. Growth Charact. Mater. 62, 1 (2016)

    Google Scholar 

  153. S. Assali, M. Albani, R. Bergamaschini, M.A. Verheijen, A. Li, S. Kölling, L. Gagliano, E.P.A.M. Bakkers, L. Miglio, Appl. Phys. Lett. 115, 113102 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. K. Das, S. Manna, A. K. Katiyar, S. Mukherjee, A. Sarkar, J. W. John, Prof. A. K. Raychaudhuri and Prof. O. Moutanabbir and his research group for their research results which are used in this manuscript. We also would like to acknowledge the partial financial support from Department of Science & Technology (DST)—Ministry of Electronics and Information Technology (MeitY) supported NNetRA “SWI” Project (Grant no. IIT/SRIC/NT/SWI/2018-19/189), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

SKR had the idea for the article. SS performed the literature search and data analysis. SS and SKR prepared the draft. SD and SKR critically revised the work.

Corresponding author

Correspondence to Samit K. Ray.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Das, S. & Ray, S.K. Progress in group-IV semiconductor nanowires based photonic devices. Appl. Phys. A 129, 216 (2023). https://doi.org/10.1007/s00339-023-06483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06483-7

Keywords

Navigation