Skip to main content
Log in

Effect of heterointerfaces on the magnetic and electrical properties of (La0.7Sr0.3MnO3)0.5:NiO0.5 nanocomposite thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Constructing artificial heterointerfaces in the complex oxides composites to enhance and explore new functionalities have been attracting extensive scientific attentions. It is of great significant to clarify the role of heterointerfaces on the functional properties. In this study, the La0.7Sr0.3MnO3/NiO heterointerfaces were constructed in self-assembled epitaxial (La0.7Sr0.3MnO3)0.5:NiO0.5 (LSMO:NiO) nanocomposite thin films by the method of pulsed laser deposition (PLD). The effect of LSMO/NiO heterointerfaces on the magnetic and electrical transport properties were studied by changing the geometric distribution of heterointerface and interfacial area. Interestingly, enhanced magnetoresistance (MR) with room temperature range at a low magnetic field of 1 T can be regulated by LSMO/NiO heterointerfaces. The mechanism of artificial electronic phase separation formed by LSMO/NiO heterointerfaces was proposed to explain the enhanced room temperature MR effect. This study provides an effective way to regulate the functional properties of oxides nanocomposite thin films by utilizing heterointerfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

On reasonable request, the corresponding author will provide the data that support the finding of this study.

References

  1. Z. Chen, Z. Liu, Y. Sun, X. Chen, Y. Liu, H. Zhang, H. Li, M. Zhang, S. Hong, T. Ren, C. Zhang, H. Tian, Y. Zhou, J. Sun, Y. Xie, Phys. Rev. Lett. 126, 026802 (2021)

    Article  ADS  Google Scholar 

  2. M. Zhang, K. Du, T. Ren, H. Tian, Z. Zhang, H.Y. Hwang, Y. Xie, Nat. Commun. 10, 4026 (2019)

    Article  ADS  Google Scholar 

  3. D. Yi, P. Yu, Y.-C. Chen, H.-H. Lee, Q. He, Y.-H. Chu, R. Ramesh, Adv. Mater. 31, 1806335 (2019)

    Article  Google Scholar 

  4. J. Peng, C. Song, F. Li, B. Cui, H. Mao, Y. Wang, G. Wang, F. Pan, A.C.S. Appl, Mat. Interfaces 7, 17700 (2015)

    Article  Google Scholar 

  5. Z. Huang, Ariando, X.R. Wang, A. Rusydi, J. Chen, H. Yang, T. Venkatesan, Adv. Mater. 30, 1802439 (2018)

  6. H. Wang, F. Liu, W. Fu, Z. Fang, W. Zhou, Z. Liu, Nanoscale 6, 12250 (2014)

    Article  ADS  Google Scholar 

  7. R. Ramesh, D.G. Schlom, Nat. Rev. Mater. 4, 257 (2019)

    Article  ADS  Google Scholar 

  8. J.L. MacManus-Driscoll, Adv. Funct. Mater. 20, 2035 (2010)

    Article  Google Scholar 

  9. J. Huang, J.L. MacManus-Driscoll, H. Wang, J. Mater. Res. 32, 4054 (2017)

    Article  ADS  Google Scholar 

  10. H.-J. Liu, W.-I. Liang, Y.-H. Chu, H. Zheng, R. Ramesh, MRS Commun. 4, 31 (2014)

    Article  ADS  Google Scholar 

  11. D. Li, D. Zheng, J. Gong, W. Zheng, C. Jin, H. Bai, A.C.S. Appl, Mat. Interfaces 9, 24331 (2017)

    Article  Google Scholar 

  12. Y.J. Wu, Z.J. Wang, Y. Bai, Y.M. Liang, X.K. Ning, Q. Wang, W. Liu, Z.D. Zhang, J. Mater. Chem. C. 7, 6091 (2019)

    Article  Google Scholar 

  13. W. Xia, Z. Pei, K. Leng, X. Zhu, Nanoscale Res. Lett. 15, 9 (2020)

    Article  ADS  Google Scholar 

  14. W. Zhang, A. Chen, Z. Bi, Q. Jia, J.L. MacManus-Driscoll, H. Wang, Curr. Opin. Solid. ST. M. 18, 6 (2014)

    Article  Google Scholar 

  15. Z.J. Wang, MRS Bull. 46, 131 (2021)

    Article  ADS  Google Scholar 

  16. X. Sun, M. Kalaswad, Q. Li, R.L. Paldi, J. Huang, H. Wang, X. Gao, X. Zhang, H. Wang, Adv. Mater. Interfaces 7, 1901990 (2020)

    Article  Google Scholar 

  17. W. Zhang, A. Chen, F. Khatkhatay, C.F. Tsai, Q. Su, L. Jiao, X. Zhang, H. Wang, A.C.S. Appl, Mater. Interfaces 5, 3995 (2013)

    Article  Google Scholar 

  18. X. Gao, L. Li, J. Jian, J. Huang, X. Sun, D. Zhang, H. Wang, Appl. Phys. Lett. 115, 053103 (2019)

    Article  ADS  Google Scholar 

  19. P. Gyanendra, A. Panchwanee, M. Kumar, K. Fritsch, R.J. Choudhary, D.M. Phase, A.C.S. Appl, Nano Mater. 4, 102 (2021)

    Google Scholar 

  20. N.K. Ning, Z.J. Wang, Z.D. Zhang, Adv. Funct. Mater. 24, 5393 (2014)

    Article  Google Scholar 

  21. M. Fan, W.R. Zhang, F. Khatkhatay, L.G. Li, H.Y. Wang, J. Appl. Phys. 118, 065302 (2015)

    Article  ADS  Google Scholar 

  22. M. Staruch, D. Hires, A. Chen, Z. Bi, H. Wang, M. Jain, J. Appl. Phys. 110, 113913 (2011)

    Article  ADS  Google Scholar 

  23. A.P. Chen, Z.X. Bi, H. Hazariwala, X.H. Zhang, Q. Su, L. Chen, Q.X. Jia, J.L. MacManus-Driscoll, H.Y. Wang, Nanotechnology 22, 315712 (2011)

    Article  ADS  Google Scholar 

  24. A. Chen, Z. Bi, C.F. Tsai, J.H. Lee, Q. Su, X. Zhang, Q. Jia, J.L. Macmanus-Driscoll, H. Wang, Adv. Funct. Mater. 21, 2423 (2011)

    Article  Google Scholar 

  25. X. Sun, Q. Li, J. Huang, M. Fan, B.X. Rutherford, R.L. Paldi, J. Jian, X. Zhang, H. Wang, Appl. Mater. Today 16, 204 (2019)

    Article  Google Scholar 

  26. A. Chen, Z. Bi, Q. Jia, J.L. MacManus-Driscoll, H. Wang, Acta Mater. 61, 2783 (2013)

    Article  ADS  Google Scholar 

  27. M. Fan, W. Zhang, J. Jian, J. Huang, H. Wang, APL. Mater. 4, 076105 (2016)

    Article  ADS  Google Scholar 

  28. X. Ning, Z. Wang, Z. Zhang, Adv. Mater. Interfaces 2, 1500302 (2015)

    Article  Google Scholar 

  29. P. Schlottmann, Phys. Rev. B: Condens. Matter 59, 11484 (1999)

    Article  ADS  Google Scholar 

  30. S.-Q. Shen, Z. Wang, Phys. Rev. B 58, R8877 (1998)

    Article  ADS  Google Scholar 

  31. M. Uehara, S. Mori, C.H. Chen, S.W. Cheong, Nature 399, 560 (1999)

    Article  ADS  Google Scholar 

  32. L. Zhang, C. Israel, A. Biswas, R.L. Greene, A. de Lozanne, Science 298, 805 (2002)

    Article  ADS  Google Scholar 

  33. Z. Bi, E. Weal, H. Luo, A. Chen, J.L. MacManus-Driscoll, Q. Jia, H. Wang, J. Appl. Phys. 109, 054302 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Grant No. 52102103), Liaoning Natural Science Foundation (Grant No. 2021-BS-091), Liaoning Province Department of Education Foundation (Grant No. LQN202012, LJKZ0100, LJC201914).

Author information

Authors and Affiliations

Authors

Contributions

YW: conceptualization, methodology, writing—original draft, writing—review and editing. JL: investigation, data curation, writing—review and editing. CL: methodology, data curation. SW: investigation, data curation.

Corresponding authors

Correspondence to Yingjie Wu or Junliang Lin.

Ethics declarations

Conflict of interest

There are no declared competing interests of the authors that are pertinent to the subject matter of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Lin, J., Li, C. et al. Effect of heterointerfaces on the magnetic and electrical properties of (La0.7Sr0.3MnO3)0.5:NiO0.5 nanocomposite thin films. Appl. Phys. A 129, 190 (2023). https://doi.org/10.1007/s00339-023-06475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06475-7

Keywords

Navigation