Skip to main content

Advertisement

Log in

Structure analyses and ferroelectric behaviour of barium titanate-doped glass–ceramic nanocrystals for energy storage applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

New glass–ceramic (GC) nanocrystals of xBaTiO3–(80–x)V2O5–20PbO glasses (where x = 5, 10, 15, 20 and 25 mol%) were synthesized via heat treatment at crystallization peak temperature (Tp) according to DSC thermograms. XRD together with dielectric measurements and E-P hysteresis loop were used to evaluate the microstructural and ferroelectric characteristics. Combining these methods made it feasible to improve the conditions for the production of the obtained nanomaterial and to identify correspondences among its nanostructure and ferroelectric features. The ability of appropriate heat treatment to transform glasses into nanocrystalline materials with crystallites smaller than 60 nm embedded in the glassy matrix was demonstrated by XRD measurements. The present glasses’ fulfilled dielectric constant values do not show any ferroelectric behavior. Nevertheless, by thermal treatment of the glass system at Tp, GC nanocrystals exhibited an average broad peak of around 330 K in the dielectric constant. The Curie temperature of BaTiO3 with particle size smaller than 100 nm is extremely close to the average Curie temperature of 338 K measured in the current glass system. By properly adjusting teat-treatment time and BaTiO3 content, this finding of these samples can be employed to manage BaTiO3 crystal size and, consequently, transition temperature. As a result, the glass–ceramic samples segregated with nanocrystalline BaTiO3 are supported by this result’s dipolar direction and phase transition. A GC nanocrystal has an intentional energy storage density of 104 mJ cm−3. These findings indicate that the current glass–ceramic nanocrystals are a promising material for creating energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this article. Requests for material should be made to the corresponding author (M. M. El-Desoky).

References

  1. H.C. Zeng, K. Tanaka, K. Hirao, N. Soga, J. Non-Cryst. Solids. 209, 112–121 (1997)

    ADS  Google Scholar 

  2. M.V. Shankar, K.B.R. Varma, J. Non-Cryst. Solids. 226, 145–154 (1998)

    ADS  Google Scholar 

  3. M.S. Al-Assiri, M.M. El-Desoky, A. Al-Hajry, A. Al-Shahrani, A.M. Al-Mogeeth, A.A. Bahgat, Phys. B. 404, 1437–1445 (2009)

    ADS  Google Scholar 

  4. A.E. Harby, A.E. Hannora, M.S. Al-Assiri, M.M. El-Desoky, J. Mater. Sci. 27, 8446–8454 (2016)

    Google Scholar 

  5. L. Lin, J. Huang, W. Yu, L. Zhu, H. Tao, P. Wang, Y. Xu, Z. Zhang, J. Magn. Magn. Mater. 500, 166380 (2020)

    Google Scholar 

  6. N. Syam Prasad, K.B.R. Varma, J. Non-Cryst. Solids. 351, 1455–1465 (2005)

    ADS  Google Scholar 

  7. Y. Hu, C.L. Huang, J. Non-Cryst. Solids. 278, 170–177 (2000)

    ADS  Google Scholar 

  8. Montagne, L., L. Cormier, and D. Caurant, 25. Bibliographie, in Du verre au cristal. EDP Sciences, 501–578 (2021)

  9. B.C. Babu, B.V. Rao, M. Ravi, S. Babu, J. Mol. Struct. 1127, 6–14 (2017)

    ADS  Google Scholar 

  10. M.M. El-Desoky, F.A. Ibrahim, A.G. Mostafa, M.Y. Hassaan, Mater. Res. Bull. 45, 1122–1126 (2010)

    Google Scholar 

  11. M.M. El-Desoky, Mater. Chem. Phys. 119, 389–394 (2010)

    Google Scholar 

  12. J. Garbarczyk, P. Jozwiak, M. Wasiucionek, J. Nowinski, J. Power Sour. 173, 743–747 (2007)

    ADS  Google Scholar 

  13. N. SyamPrasad, K.R. Varma, Y. Takahashi, Y. Benino, T. Fujiwara, T. Komatsu, J. Solid State Chem. 173, 209–215 (2003)

    ADS  Google Scholar 

  14. M.M. El-Desoky, Phys. Stat. Sol. (A). 195, 422–428 (2003)

    ADS  Google Scholar 

  15. K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, H. Nasu, J. Non-Cryst. Solids. 185, 123–126 (1995)

    ADS  Google Scholar 

  16. Y. Ohta, M. Kitayama, K. Kaneko, S. Toh, F. Shimizu, K. Morinaga, J. Am. Ceramic Soc. 88, 1634–1636 (2005)

    Google Scholar 

  17. L.A. Thomas, Ferroelectrics 3, 231–238 (1972)

    ADS  Google Scholar 

  18. A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 4, 366–377 (2005)

    ADS  Google Scholar 

  19. X. Hao, J. Adv. Dielect. 03, 1330001–1330009 (2013)

    ADS  Google Scholar 

  20. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Progress Mater. Sci. 102, 72–108 (2019)

    Google Scholar 

  21. J.E. Shelby, Introduction to glass science and technology (Royal Society of Chemistry, 2020)

    Google Scholar 

  22. E.P. Gorzkowski, M.J. Pan, B. Bender, C.C.M. Wu, J. Electroceramics. 18, 269–276 (2007)

    Google Scholar 

  23. A.M. Ali, A.E. Hannora, E. El-Falaky, M.M. El-Desoky, J. Non-Cryst. Solids. 584, 121382 (2022)

    Google Scholar 

  24. M. Al-Assiri, S. Salem, M. El-Desoky, J. Phys. Chem. Solids. 67, 1873–1881 (2006)

    ADS  Google Scholar 

  25. M. El-Desoky, M. Al-Assiri, A. Bahgat, J. Alloys Compd. 590, 572–578 (2014)

    Google Scholar 

  26. M.M. El-Desoky, M.S. Al-Assiri, Mater. Sci. Eng. B. 137, 237–246 (2007)

    Google Scholar 

  27. N.K. Wally, E. Sheha, B.M. Kamal, A.E. Hannora, M.M. El-Desoky, J. Alloys Compd. 895, 162644 (2022)

    Google Scholar 

  28. S. Sakka, J. Mackenzie, J. Non-Cryst. Solids 6, 145–162 (1971)

    ADS  Google Scholar 

  29. M. El-Desoky, F. Ibrahim, A. Mostafa, M. Hassaan, J Mater Res Bull. 45, 1122–1126 (2010)

    Google Scholar 

  30. J.E. Garbarczyk, P. Jozwiak, M. Wasiucionek, J.L. Nowinski, Solid State Ionics 177, 2585–2588 (2006)

    Google Scholar 

  31. I. Morad, H.E. Ali, M. Wasfy, A. Mansour, M. El-Desoky, Vacuum 181, 109735 (2020)

    ADS  Google Scholar 

  32. M. Salah, I. Morad, H.E. Ali, M.M. Mostafa, M.M. El-Desoky, J. Inorg. Organomet. Polym. Mater. 31, 3700–3710 (2021)

    Google Scholar 

  33. M. Sadhukhan, D. Modak, B. Chaudhuri, J. Appl. Phys. 85, 3477–3487 (1999)

    ADS  Google Scholar 

  34. W. Xiaoyong, F. Yujun, Y. Xi, Appl. Phys. Lett. 83, 2031–2033 (2003)

    ADS  Google Scholar 

  35. Y.M. Poplavko, V. Bovtun, N.N. Krainik, GAe. Smolenskii, J. Fizika Tverdogo Tela. 27, 3161–3163 (1985)

    Google Scholar 

  36. A.A. Bokov, M. Maglione, A. Simon, Z.G. Ye, Ferroelectrics 337, 169–178 (2006)

    ADS  Google Scholar 

  37. M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials (Oxford University Press, 2001)

    Google Scholar 

  38. T. Hoshina, H. Kakemoto, T. Tsurumi, S. Wada, M. Yashima, J. Appl. Phys. 99, 054311 (2006)

    ADS  Google Scholar 

  39. M. Al-Assiri, M. El-Desoky, J. Non-cryst. Solids. 358, 1605–1610 (2012)

    ADS  Google Scholar 

  40. K.A. Shore, Contemp. Phys. 55, 337–337 (2014)

    ADS  Google Scholar 

  41. D.J. Thouless, Science 207, 1196–1197 (1980)

    Google Scholar 

  42. J. Wang, N. Sun, Y. Li, Q. Zhang, X. Hao, X. Chou, Ceram. Int. 43, 7804–7809 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Ministry of Education in KSA for funding this research work through the project number KKU-IFP2-DA-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. El-Desoky.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in the current article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Desoky, M.M., Morad, I., Ali, H.E. et al. Structure analyses and ferroelectric behaviour of barium titanate-doped glass–ceramic nanocrystals for energy storage applications. Appl. Phys. A 129, 196 (2023). https://doi.org/10.1007/s00339-023-06474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06474-8

Keywords

Navigation