Skip to main content

Advertisement

Log in

Nanosecond laser-induced liquid-to-gas transitions for light-to-mechanical energy conversion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanosecond laser impulsive heating is used to generate a liquid→gas phase transition that performs mechanical work. A simple laser flyer apparatus is designed where a metal plate is placed on top of a variable volume of liquid. When a high-energy nanosecond laser pulse impacts the bottom of the plate, explosive vaporization of the liquid propels it upward. The initial velocity of the plate, and thus its kinetic energy, is measured as a function of several parameters, including liquid volume, laser wavelength, pulse energy, and chemical composition of the liquid. Light-to-kinetic energy conversion efficiencies that approach 2% are measured. Although surface discoloration of the metal is observed, there was no measurable decrease in the initial velocity even after 200 cycles. For protic liquids like water and ethylene glycol, the initial velocity is independent of the chemical composition of the liquid, possibly due to the contribution of exothermic oxidative reactions at high temperatures. For alkane liquids, the initial velocity decreases with increasing molecular weight, consistent with a simple model that relates it to physical properties like the heat of vaporization. The results suggest that nanosecond pulsed laser heating for liquid→gas actuation may be a relatively efficient way to transform photons into mechanical energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. N. El-Atab, R.B. Mishra, F. Al-Modaf, J. Lana, A.A. Alsharif, H. Alamoudi, M. Diaz, N. Qaiser, M.M. Hussain, Soft actuators for soft robotic applications: a review. Adv. Intell. Syst. 2, 2000128 (2020)

    Google Scholar 

  2. A. Miriyev, K. Stack, H. Lipson, Soft material for soft actuators. Nat. Commun. 8, 596 (2016)

    ADS  Google Scholar 

  3. H. Matsuoka, K. Suzumori, T. Kanda, Development of a gas/liquid phase change actuator for high temperatures. Robomech J. 3, 1 (2016)

    Google Scholar 

  4. R. Chellattoan, A. Yudhanto, G. Lubineau, Low-voltage-driven large-amplitude soft actuators based on phase transition. Soft Rob. 7, 688–699 (2020)

    Google Scholar 

  5. T. Noguchi, F. Tsumori, Soft actuator with large volumetric change using vapor–liquid phase transition. Jap. J. Appl. Phys. 59, SIIL08 (2020)

    Google Scholar 

  6. K. Narumi, H. Sato, K. Nakahara, Y.A. Seong, K. Morinaga, Y. Kakehi, R. Niiyama, Y. Kawahara, Liquid pouch motors: printable planar actuators driven by liquid-to-gas phase change for shape-changing interfaces. IEEE Robot. Autom. Lett. 5, 3915–3922 (2020)

    Google Scholar 

  7. T. Usui, H. Ishizuka, T. Hiraki, Y. Kawahara, S. Ikeda, O. Oshiro, Fully flexible liquid-to-gas phase change actuators with integrated liquid metal heaters. Jap. J. Appl. Phys. 60, SCCL11 (2021)

    Google Scholar 

  8. X. Li, H. Duan, P. Lv, X. Yi, Soft actuators based on liquid-vapor phase change composites. Soft Rob. 8, 251–261 (2021)

    Google Scholar 

  9. G. Lin, W. Huang, C. Hu, J. Xiao, F. Zhou, X. Zhang, J. Liang, J. Liang, Design and control strategy of soft robot based on gas–liquid phase transition actuator. Mathematics 10, 2847 (2022)

    Google Scholar 

  10. S. Ueno, Y. Monnai, Wireless soft actuator based on liquid–gas phase transition controlled by millimeter-wave irradiation. IEEE Robot. Autom. Lett. 5, 6483–6488 (2020)

    Google Scholar 

  11. S.M. Mirvakili, D. Sim, I.W. Hunter, R. Langer, Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions. Sci. Robot. 5, eaaz4239 (2020)

    Google Scholar 

  12. J. Han, W. Jiang, D. Niu, Y. Li, Y. Zhang, B. Lei, H. Liu, Y. Shi, B. Chen, L. Yin, X. Liu, D. Peng, B. Lu, Untethered soft actuators by liquid–vapor phase transition: remote and programmable actuation. Adv. Intell. Syst. 1, 1900109 (2019)

    Google Scholar 

  13. T. Hiraki, K. Nakahara, K. Narumi, R. Niiyama, N. Kida, N. Takamura, H. Okamoto, Y. Kawahara, Laser pouch motors: selective and wireless activation of soft actuators by laser-powered liquid-to-gas phase change. IEEE Robot. Autom. Lett. 5, 4180–4187 (2020)

    Google Scholar 

  14. Z. Zhao, S. Glod, D. Poulikakos, Pressure and power generation during explosive vaporization on a thin-film microheater. Int. J. Heat Mass Transfer 43, 281–296 (2000)

    Google Scholar 

  15. S.A. Whalen, C.D. Richards, D.F. Bahr, R.F. Richards, Characterization and modeling of a microcapillary driven liquid–vapor phase-change membrane actuator. Sens. Actuat. A 134, 201–212 (2007)

    Google Scholar 

  16. D.M.V.D. Broek, M. Elwenspoek, Explosive micro-bubble actuator. Sens. Actuat. A 145–146, 387–393 (2008)

    Google Scholar 

  17. H.K. Bardaweel, M.J. Anderson, L.W. Weiss, R.F. Richards, C.D. Richards, Characterization and modeling of the dynamic behavior of a liquid–vapor phase change actuator. Sens. Actuat. A 149, 284–291 (2009)

    Google Scholar 

  18. D.D. Dlott, Laser pulses into bullets: tabletop shock experiments. Phys. Chem. Chem. Phys. 24, 10653–10666 (2022)

    Google Scholar 

  19. C. Phipps, M. Birkan, W. Bohn, H.-A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, J. Sinko, Review: laser-ablation propulsion. J. Propuls. Power 26, 609–636 (2010)

    Google Scholar 

  20. K.A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, A.S.I. Anisimov, K.-I. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, K. Mima, Multi-layered flyer accelerated by laser induced shock waves. Phys. Plasmas. 7, 676–680 (2000)

    ADS  Google Scholar 

  21. D.C. Swift, J.G. Niemczura, D.L. Paisley, R.P. Johnson, S.-N. Luo, T.E. Tierney, Laser-launched flyer plates for shock physics experiments. Rev. Sci. Instrum. 76, 093907 (2005)

    ADS  Google Scholar 

  22. D.L. Paisley, S.-N. Luo, S.R. Greenfield, A.C. Koskelo, Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications. Rev. Sci. Instrum. 79, 023902 (2008)

    ADS  Google Scholar 

  23. A.D. Curtis, A.A. Banishev, W.L. Shaw, D.D. Dlott, Laser-driven flyer plates for shock compression science: launch and target impact probed by photon Doppler velocimetry. Rev. Sci. Instrum. 85, 043908 (2014)

    ADS  Google Scholar 

  24. L. Wang, Y. Yan, X. Ji, W. Zhang, H. Jiang, W. Qin, Y. Wang, D. Tang, Improving the energy conversion efficiency of a laser-driven flyer by an in situ-fabricated nano-absorption layer. Nanoscale Res. Lett. 15, 125 (2020)

    ADS  Google Scholar 

  25. J.M. Fishburn, M.J. Withford, D.W. Coutts, J.A. Piper, Study of the fluence dependent interplay between laser induced material removal mechanisms in metals: vaporization, melt displacement and melt ejection. Appl. Surf. Sci. 252, 5182–5188 (2006)

    ADS  Google Scholar 

  26. F. Brauer, What goes up must come down, eventually. Am. Math. Monthly 108, 437–440 (2001)

    MathSciNet  MATH  Google Scholar 

  27. J.M. Fishburn, R.P. Mildren, D. Kapitan, M.J. Withford, D.J.W. Brown, J.A. Piper, Exploring the explosive ablation regime of metals in nanosecond micromachining. Proc. SPIE 3885, 453–460 (1999)

    ADS  Google Scholar 

  28. M.-R. Kalus, S. Barcikowski, B. Gokce, How the physicochemical properties of the bulk material affect the ablation crater profile, mass balance, and bubble dynamics during single-pulse, nanosecond laser ablation in water. Chem. Eur. J. 27, 5978–5991 (2021)

    Google Scholar 

  29. M. Senegačnik, M. Jezeršek, P. Gregorčič, Propulsion effects after laser ablation in water, confined by different geometries. Appl. Phys. A 126, 136 (2020)

    ADS  Google Scholar 

  30. R. Singh, R.K. Soni, Laser synthesis of aluminium nanoparticles in biocompatible polymer solutions. Appl. Phys. A 116, 689–701 (2014)

    ADS  Google Scholar 

  31. G. Abdellatif, H. Imam, A study of the laser plasma parameters at different laser wavelengths. Spectrochim. Acta B 57, 1155–1165 (2002)

    ADS  Google Scholar 

  32. A. Bogaerts, Z. Chen, Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation. Spectrochim. Acta B 60, 1280–1307 (2005)

    ADS  Google Scholar 

  33. M. Stafe, I. Vladoiu, I.M. Popescu, Impact of the laser wavelength and fluence on the ablation rate of aluminium. Cent. Eur. J. Phys. 6, 327–331 (2008)

    Google Scholar 

  34. M.I.S.M.H. Tana, A.F. Omara, M. Rashida, U. Hashimc, VIS-NIR spectral and particles distribution of Au, Ag, Cu, Al and Ni nanoparticles synthesized in distilled water using laser ablation. Results Physics 14, 102497 (2019)

    Google Scholar 

  35. O. Yavas, P. Leiderer, H.K. Park, C.P. Grigoropoulos, C.C. Poon, W.P. Leung, N. Do, A.C. Tam, Optical and acoustic study of nucleation and growth of bubbles at a liquid-solid interface induced by nanosecond-pulsed-laser heating. Appl. Phys. A 58, 407–415 (1994)

    ADS  Google Scholar 

  36. S. Glod, D. Poulikakos, Z. Zhao, G. Yadigaroglu, An investigation of microscale explosive vaporization of wateron an ultrathin Pt wire. Int. J. Heat Mass Transfer 45, 367–379 (2002)

    Google Scholar 

  37. A. Takamizawa, S. Kajimoto, J. Hobley, K. Hatanaka, K. Ohta, H. Fukumura, Explosive boiling of water after pulsed IR laser heating. Phys. Chem. Chem. Phys. 5, 888–895 (2003)

    Google Scholar 

  38. Z. Yin, A. Prosperetti, J. Kim, Bubble growth on an impulsively powered microheater. Int. J. Heat Mass Transfer 47, 1053–1067 (2004)

    Google Scholar 

  39. Y.D. Varlamov, Y.P. Meshcheryakov, S.I. Lezhnin, M.R. Predtechenskii, S.N. Ul’yankin, Evolution of a vapor cavity during explosive boiling on a film microheater: experiment and numerical simulation. J. Appl. Mech. Tech. Physics. 48, 534–541 (2007)

    ADS  Google Scholar 

  40. S. Escobar-Vargas, D. Fabris, J.E. Gonzalez, R. Sharma, C. Bash, O.E. Ruiz, Bubble growth characterization during fast boiling in an enclosed geometry. Int. J. Heat Mass Transfer 52, 5102–5112 (2009)

    MATH  Google Scholar 

  41. J.C. Carls, J.R. Brock, Explosive vaporization of single droplets by lasers: comparison of models with experiments. Opt. Lett. 13, 919–921 (1988)

    ADS  Google Scholar 

  42. D.L. Allara, D. Edelson, A computational modeling study of the low-temperature pyrolysis of n-alkanes; mechanisms of propane, n-butane, and n-pentane pyrolyses. Int. J. Chem. Kinet. 7, 479–507 (1975)

    Google Scholar 

  43. I. Safarik, O.P. Strausz, The thermal decomposition of hydro-carbons. Part 1. n-alkanes (C ≥ 5). Res. Chem. Intermed. 22, 275–314 (1996)

    Google Scholar 

  44. S.S. Nagaraja, A. Sahu, S. Panigrahy, H. Curran, A fundamental study on the pyrolysis of hydrocarbons. Combust. Flame 223, 111579 (2021)

    Google Scholar 

  45. H. Yu, V. Fedotov, W. Baek, J.J. Yoh, Towards controlled flyer acceleration by a laser-driven mini flyer. Appl. Phys. A 115, 971–978 (2014)

    ADS  Google Scholar 

  46. H. Okamura, On the efficiency of heat engines by pulsed laser. Proc. SPIE 7266, 726609 (2008)

    Google Scholar 

  47. J.R. Rumble, CRC handbook of chemistry and physics, 103rd edn. (CRC Press, Boca Raton, 2022)

    Google Scholar 

  48. https://webbook.nist.gov/chemistry/, NIST Chemistry WebBook, SRD 69 (2022)

Download references

Acknowledgements

C. J. B. acknowledges support from the Office of Naval Research (MURI on Photomechanical Material Systems; ONR N00014-18-1-2624). T.N.L. acknowledges support from the Department of Defense (DoD) Science, Mathematics, and Research for Transformation (SMART) Scholarship.

Funding

This work was supported by the Office of Naval Research (MURI on Photomechanical Material Systems; ONR N00014-18-1-2624).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by TNL. The first draft of the manuscript was written by CJB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Christopher J. Bardeen.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

339_2023_6471_MOESM1_ESM.pdf

Supplementary Information. Supplementary information is available, including metal, confinement, mass, and protic solvent dependences, cycling data, and images of Al and PMMA substrate (PDF 611 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, T.N., Bardeen, C.J. Nanosecond laser-induced liquid-to-gas transitions for light-to-mechanical energy conversion. Appl. Phys. A 129, 189 (2023). https://doi.org/10.1007/s00339-023-06471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06471-x

Keywords

Navigation