Skip to main content
Log in

Temperature and substrate effect on the electrical and structural properties of NiO columnar nanostructure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

NiO columnar nanostructure has been grown by simultaneous deposition of thermal evaporation and oblique angle deposition (OAD) on stainless steel and glass substrates. The structural properties of NiO columnar nanostructure on both substrates were investigated. The electrical properties of NiO columnar nanostructure on both substrates were investigated by the Hall effect. Thin films on glass substrate showed rough surfaces with irregular distribution of grains, while those on steel substrate showed rough surfaces and flower-like grains with uniform distribution. At temperatures below 410 °K, the resistivity and mobility of NiO columnar nanostructure on both substrates decreased. The resistivity decreased and mobility increased with increasing temperature for NiO thin films on steel and glass at a temperature range of 410–470 °K and 410–520 °K, respectively. At higher temperatures, the resistivity of NiO thin film on steel decreased with temperature, while the resistivity and mobility of NiO thin film on glass remained almost constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw data are available on request to the corresponding author.

References

  1. Y.H. Liu, S.J. Young, L.W. Ji, S.J. Chang, IEEE Trans. Electron Devices 62, 2924–2927 (2015)

    Article  ADS  Google Scholar 

  2. S.J. Chang, B.G. Duan, C.H. Hsiao, C.W. Liu, S.J. Young, IEEE Photonics Technol. Lett. 26, 66–69 (2013)

    Article  ADS  Google Scholar 

  3. K.J. Chen, F.Y. Hung, S.J. Chang, S.J. Young, Z.S. Hu, Curr. Appl. Phys. 11, 1243–1248 (2011)

    Article  ADS  Google Scholar 

  4. S.J. Young, C.C. Yang, L.T. Lai, J. Electrochem. Soc. 164, B3013 (2016)

    Article  Google Scholar 

  5. D. Kaya, H.S. Aydınoğlu, E.S. Tüzemen, A. Ekicibil, Thin Solid Films 732, 138800 (2021)

    Article  ADS  Google Scholar 

  6. M. Carbone, Appl. Sci. 12, 2839 (2022)

    Article  Google Scholar 

  7. T.P. Mokoena, H.C. Swart, D.E. Motaung, J. Alloys Compd. 805, 267–294 (2019)

    Article  Google Scholar 

  8. N. Tiwari, H. ArianitaDewi, E. Erdenebileg, R. Narayan Chauhan, N. Mathews, S. Mhaisalkar, A. Bruno, Sol. RRL. 6, 2100700 (2022)

    Article  Google Scholar 

  9. I. Jang, G.H. Kelsall, Electrochem. Commun. 137, 107260 (2022)

    Article  Google Scholar 

  10. M. Yang, H. Zhu, Y. Zheng, C. Zhang, G. Luo, Q. Xu, R. Tu, RSC Adv. 12, 10496–10503 (2022)

    Article  ADS  Google Scholar 

  11. F.Y. Chuang, D.P. Hasibuan, C.S. Saragih, R.A. Patil, C.H. Tsai, Y. Liou, Y.R. Ma, Surf. Interfaces. 30, 101845 (2022)

    Article  Google Scholar 

  12. Z. Hu, D. Chen, P. Yang, L. Yang, L. Qin, Y. Huang, X. Zhao, Appl. Surf. Sci. 441, 258–264 (2018)

    Article  ADS  Google Scholar 

  13. S.J. Mezher, M.O. Dawood, A.A. Beddai, M.K. Mejbel, Mater. Technol. 35, 60–68 (2020)

    Article  ADS  Google Scholar 

  14. D. Adler, J. Feinleib, Phys. Rev. B 2, 3112 (1970)

    Article  ADS  Google Scholar 

  15. M. Fakharpour, M. GholizadehArashti, M.T. MusazadeMeybodi, JOPN. 6, 25–42 (2021)

    Google Scholar 

  16. M. GholizadehArashti, M. Fakharpour, Eur. Phys. J. B 93, 1–6 (2020)

    Article  Google Scholar 

  17. M. Fakharpour, F. Babaei, H. Savaloni, Plasmonics 11, 1579–1587 (2016)

    Article  Google Scholar 

  18. A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Prog. Mater Sci. 76, 59–153 (2016)

    Article  Google Scholar 

  19. M. Tyagi, M. Tomar, V. Gupta, Biosens. Bioelectron. 52, 196–201 (2014)

    Article  Google Scholar 

  20. V. Kannan, A.I. Inamdar, S.M. Pawar, H.S. Kim, H.C. Park, H. Kim, H. Im, Y.S. Chae, A.C.S. Appl, Mater. Interfaces. 8, 17220–17225 (2016)

    Article  Google Scholar 

  21. U.M. Patil, R.R. Salunkhe, K.V. Gurav, C.D. Lokhande, Appl. Surf. Sci. 255, 2603–2607 (2008)

    Article  ADS  Google Scholar 

  22. K. Zhang, C. Rossi, P. Alphonse, C. Tenailleau, Nanotechnology 19, 155605 (2008)

    Article  ADS  Google Scholar 

  23. R.K. Jain, Y.K. Gautam, V. Dave, A.K. Chawla, R. Chandra, Appl. Surf. Sci. 283, 332–338 (2013)

    Article  ADS  Google Scholar 

  24. F. Ruffino, M.G. Grimaldi, Nanosci. Nanotechnol. 4, 309–315 (2012)

    Google Scholar 

  25. O. Kohmoto, H. Nakagawa, F. Ono, A. Chayahara, J. Magn. Magn. Mater. 226, 1627–1628 (2001)

    Article  ADS  Google Scholar 

  26. Y.M. Lu, W.S. Hwang, J.S. Yang, Surf. Coat. Technol. 155, 231–235 (2002)

    Article  Google Scholar 

  27. H.L. Chen, Y.M. Lu, W.S. Hwang, Surf. Coat. Technol. 198, 138–142 (2005)

    Article  Google Scholar 

  28. A.M. Reddy, A.S. Reddy, K.S. Lee, P.S. Reddy, Solid State Sci. 13, 314–320 (2011)

    Article  ADS  Google Scholar 

  29. S.C. Chen, T.Y. Kuo, T.H. Sun, Surf. Coat. Technol. 205, S236–S240 (2010)

    Article  Google Scholar 

  30. P. Mohan Babu, G. Venkata Rao, P. Sreedhara Reddy, S. Uthanna, J. Mater. Sci. Mater. Electron. 15, 389–394 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have a same contribution in the manuscript.

Corresponding author

Correspondence to Mahsa. Fakharpour.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakharpour, M., Karimi Tafti, M.H. Temperature and substrate effect on the electrical and structural properties of NiO columnar nanostructure. Appl. Phys. A 129, 234 (2023). https://doi.org/10.1007/s00339-023-06454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06454-y

Keywords

Navigation