Skip to main content
Log in

Fast kinetic laser spectroscopy of the exciton dynamics during photocatalytic ZnCdS/ZnCdS/ZnS QDs mediated hydrogen production

  • Invited Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The alloys of Zn0.34Cd0.66S QDs show a high photocatalytic activity when mediating the hydrogen production from water with a reaction rate of 233 ± 9 µmol h−1 g−1. The reaction is carried out in the presence of ascorbic acid as sacrificial electron donor. The alloy Zn0.34Cd0.66S/ZnS QDs with a ZnS shell showed a yield about seven times lower for the same process compared to the ZnCdS/ZnS alloy. The dynamics of the exciton reactions in the initial stages of the reaction mediated by these QDs was studied by femtosecond laser spectroscopy. Femtosecond transient absorption spectra is reported in a detailed and comprehensive way describing dynamics of the absorption peak A1 near the bleach band of edge exciton B1. This A1 absorption peak is attributed to the Stark shift due to exciton–exciton interactions due to the trapping of a hole or an electron on the QDs surface. In shell-less ZnCdSQDs, the A1 peak presented two kinetic components: the damping of the A1 peak amplitude due to the relaxation of “hot” excitons and the concomitant growth of the A1 peak at later delay times. We suggest that this was due to due to the carrier capture charge by surface traps leading to electric field redistribution in the QDs. The relaxation/decay of “hot” electrons in alloys of ZnCdS and ZnCdS/ZnS QDs occur with characteristic times of τZnCdS = 153 fs for ZnCdS and τZnCdS/ZnS = 193 fs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Scheme 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Dynamics of the TA spectra demonstrated in Figures 4, 6, and 8 suggests that holes are captured at the surface traps.

References

  1. S. Rtimi, J. Kiwi, V. Nadtochenko, Curr. Opin. Chem. Eng. 34, 100731 (2021)

    Article  Google Scholar 

  2. Y. Liu, X. Zheng, Y. Yang, Y. Song, Y. Yang, J. Li, C.M. Shim, Y. Shen, X. Tian, Sol. RRL 6, 2101061 (2022)

    Article  Google Scholar 

  3. D. Cherepanov, A. Kostrov, F. Gostev, I. Shelaev, M. Motyakin, S. Kochev, Y. Kabachii, V. Nadtochenko, Nanomaterials 11, 3007 (2021)

    Article  Google Scholar 

  4. V. Nadtochenko, A. Kostrov, A. Titov, A. Aybush, F. Gostev, I. Shelaev, D. Shepel, O. Antonova, S. Kochev, Y. Kabachii, Chem. Phys. Lett. 743, 137160 (2020)

    Article  Google Scholar 

  5. P. Wu, X. P. Yan, Chem. Soc. Rev. 42, (2013).

  6. K.Y. Zhang, Q. Yu, H. Wei, S. Liu, Q. Zhao, W. Huang, Chem. Rev. 118, 1770 (2018)

    Article  Google Scholar 

  7. S. Ullah, H. Ullah, F. Bouhjar, M. Mollar, B. Marí, A. Chahboun, ECS J. Solid State Sci. Technol. 7, P345 (2018)

    Article  Google Scholar 

  8. P.V. Kamat, Acc. Chem. Res. 50, 527 (2017)

    Article  Google Scholar 

  9. I. Levchuk, C. Wurth, F. Krause, A. Osvet, M. Batentschuk, U. Resch-Genger, C. Kolbeck, P. Herre, H.P. Steinruck, W. Peukert, C.J. Brabec, Energy Environ. Sci. 9, 1083 (2016)

    Article  Google Scholar 

  10. M.C. Beard, J.M. Luther, O.E. Semonin, A.J. Nozik, Acc. Chem. Res. 46, 1252 (2013)

    Article  Google Scholar 

  11. E. Ha, S. Ruan, D. Li, Y. Zhu, Y. Chen, J. Qiu, Z. Chen, T. Xu, J. Su, L. Wang, J. Hu, Nano Res. 15, 996 (2021)

    Article  ADS  Google Scholar 

  12. M. Ahmad, X. Quan, S. Chen, H. Yu, Z. Zeng, Appl. Catal. B Environ. 283, 119601 (2021)

    Article  Google Scholar 

  13. K. Liu, L. Peng, P. Zhen, L. Chen, S. Song, H. Garcia, C. Sun, J. Phys. Chem. C 125, 14656 (2021)

    Article  Google Scholar 

  14. Q. Yang, L. Yu, X. Zhao, Y. Wang, H. Zhu, Y. Zhang, Int. J. Hydrogen Energy 47, 27516 (2022)

    Article  Google Scholar 

  15. J. Chen, J. Chen, Y. Li, J. Mater. Chem. A 5, 24116 (2017)

    Article  Google Scholar 

  16. H. Liu, P. Su, Z. Jin, Q. Ma, Catal. Lett. 150, 2937 (2020)

    Article  Google Scholar 

  17. Z. Li, J. Wei, F. Wang, Y. Tang, A. Li, Y. Guo, P. Huang, S. Brovelli, H. Shen, H. Li, Adv. Energy Mater. 11, 2101693 (2021)

    Article  Google Scholar 

  18. Y. Zhang, X. Kong, Y. Qu, P. Jing, Q. Zeng, Y. Sun, A.Y. Wang, J. Zhao, H. Zhang, J. Lumin. 129, 1410 (2009)

    Article  Google Scholar 

  19. Y.A. Kabachii, A.S. Golub, A.S. Goloveshkin, S.S. Abramchuk, A.V. Shapovalov, M.I. Buzin, P.M. Valetskii, S.Y. Kochev, Russ. Chem. Bull. 63, 2355 (2015)

    Article  Google Scholar 

  20. Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, J. Gong, ACS Catal. 3, 882 (2013)

    Article  Google Scholar 

  21. K. Wu, H. Zhu, T. Lian, Acc. Chem. Res. 48, 851 (2015)

    Article  Google Scholar 

  22. H. Zhu, Y. Yang, K. Wu, T. Lian, Annu. Rev. Phys. Chem. 67, 259 (2016)

    Article  ADS  Google Scholar 

  23. T.A. Gellen, J. Lem, D.B. Turner, Nano Lett. 17, 2809 (2017)

    Article  ADS  Google Scholar 

  24. P. Tyagi, P. Kambhampati, J. Chem. Phys. 134, (2011).

  25. V.I. Klimov, Annu. Rev. Phys. Chem. 58, 635 (2007)

    Article  ADS  Google Scholar 

  26. A.M. Kelley, J. Phys. Chem. Lett. 1, 1296 (2010)

    Article  Google Scholar 

  27. T. Virgili, I.S. López, B. Vercelli, G. Angella, G. Zotti, J. Cabanillas-Gonzalez, D. Granados, L. Luer, R. Wannemacher, F. Tassone, J. Phys. Chem. C 116, 16259 (2012)

    Article  Google Scholar 

  28. V. Nadtochenko, N. Denisov, A. Aybush, F. Gostev, I. Shelaev, A. Titov, S. Umanskiy, D. Cherepanov, Nanomaterials 7, 371 (2017)

    Article  Google Scholar 

  29. M. Kaschke, N.P. Ernsting, U. Müller, H. Weller, Chem. Phys. Lett. 168, 543 (1990)

    Article  ADS  Google Scholar 

  30. V. Nadtochenko, D. Cherepanov, S. Kochev, M. Motyakin, A. Kostrov, A. Golub, O. Antonova, Y. Kabachii, S. Rtimi, J. Photochem. Photobiol. A Chem. 429, 113946 (2022)

    Article  Google Scholar 

  31. V. Nadtochenko, A. Kostrov, A. Titov, A. Aybush, F. Gostev, I. Shelaev, D. Shepel, O. Antonova, S. Kochev, Y. Kabachii, P. Valetsky, Appl. Phys. A Mater. Sci. Process. 126, (2020).

  32. D.A. Cherepanov, I.V. Shelaev, F.E. Gostev, M.D. Mamedov, A.A. Petrova, A.V. Aybush, V.A. Shuvalov, A.Y. Semenov, V.A. Nadtochenko, J. Phys. B At. Mol. Opt. Phys. 50, 174001 (2017)

    Article  ADS  Google Scholar 

  33. O.A. Smitienko, T.B. Feldman, L.E. Petrovskaya, O.V. Nekrasova, M.A. Yakovleva, I.V. Shelaev, F.E. Gostev, D.A. Cherepanov, I.B. Kolchugina, D.A. Dolgikh, V.A. Nadtochenko, M.P. Kirpichnikov, M.A. Ostrovsky, J. Phys. Chem. B 125, 995 (2021)

    Article  Google Scholar 

  34. D.A. Cherepanov, I.V. Shelaev, F.E. Gostev, M.D. Mamedov, A.A. Petrova, A.V. Aybush, V.A. Shuvalov, A.Y. Semenov, V.A. Nadtochenko, Biochim. Biophys. Acta Bioenergy 1858, 895 (2017)

    Article  Google Scholar 

  35. X. Zhong, Y. Feng, W. Knoll, M. Han, J. Am. Chem. Soc. 125, 13559 (2003)

    Article  Google Scholar 

  36. Y.A. Kabachii, A.S. Golub’, A.S. Goloveshkin, S.S. Abramchuk, A.V. Shapovalov, M.I. Buzin, P.M. Valetskii, S.Y. Kochev, Russ. Chem. Bull. 63, (2014).

  37. Y.A. Kabachii, S.Y. Kochev, N.D. Lenenko, V.I. Zaikovskii, A.S. Golub, M.Y. Antipin, P.M. Valetskii, Polym. Sci. Ser. B 55, (2013).

  38. S.Y. Kochev, Y.N. Bubnov, S.S. Abramchuk, O.Y. Antonova, P.M. Valetsky, Y.A. Kabachii, Mendeleev Commun. 27, (2017).

  39. Y.A. Kabachii, S.Y. Kochev, M.K. Alenichev, O.Y. Antonova, A.Y. Sadagov, P.M. Valetskii, V.A. Nadtochenko, Russ. Chem. Bull. 67, (2018).

  40. V.I. Klimov, J. Phys. Chem. B 104, 6112 (2000)

    Article  Google Scholar 

  41. S.L. Sewall, R.R. Cooney, K.E.H.H. Anderson, E.A. Dias, P. Kambhampati, Phys. Rev. B Condens. Matter Mater. Phys. 74, 1 (2006).

  42. P. Kambhampati, Acc. Chem. Res. 44, 1 (2011)

    Article  Google Scholar 

  43. P. Kambhampati, J. Phys. Chem. C 115, 22089 (2011)

    Article  Google Scholar 

Download references

Funding

Ministry of Science and Higher Education of the Russian Federation Grant #075-15-2022-255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Nadtochenko.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 966 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadtochenko, V., Kochev, S., Kabachii, Y. et al. Fast kinetic laser spectroscopy of the exciton dynamics during photocatalytic ZnCdS/ZnCdS/ZnS QDs mediated hydrogen production. Appl. Phys. A 129, 155 (2023). https://doi.org/10.1007/s00339-023-06453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06453-z

Keywords

Navigation