Skip to main content
Log in

Room-temperature multiferroic behavior in the three-layer Aurivillius compound Bi3.25La0.75Ti2Nb0.5(Fe1-x Cox)0.5O12

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Multiferroic Bi3.25La0.75Ti2Nb0.5(Fe1-xCox)0.5O12 ceramics with x = 0, 0.3, 0.4 and 0.5 were synthesized by a conventional solid-state reaction route to evaluate the effects of cobalt doping on structural, electrical and magnetic properties. All samples display layered perovskite Aurivillius phase with typical microstructure of plate-like grains. The grain size decreases with increasing Co content, from ∼5 μm to ∼1 μm. Room-temperature dielectric permittivity values range from 160 (x = 0) to 210 (x = 0.5) with negligible frequency dispersion and losses below 0.02 in a wide frequency range. A decrease of the Curie temperature with Co addition was observed. The Co-doped ceramics display well-defined ferroelectric and ferromagnetic hysteresis loops at room temperature. The best magnetic properties are obtained for x = 0.3 and x = 0.4 with a remnant magnetization of ∼0.1 emu/g. Butterfly-type hysteresis loops are observed for the magnetodielectric response using a measurement protocol that can be useful for other single-phase multiferroic materials. The MD coefficient does not depend on frequency and the maximum value (∼0.5%) is obtained for cobalt content x = 0.3. So, these multiferroic three-layer Aurivillius compounds may be considered as promising candidates for memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article.

References

  1. N.A. Benedek, J.M. Rondinelli, H. Djani, P. Ghosez, P. Lightfoot, Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Trans. 44, 10543–10558 (2015)

    Google Scholar 

  2. S. Sun, X. Yin, Progress and perspectives on Aurivillius-type layered ferroelectric oxides in binary Bi4Ti3O12-BiFeO3 system for multifunctional applications. Crystals 11, 23 (2021)

    Google Scholar 

  3. S.J. Sun, Y.H. Ling, R.R. Peng, M. Liu, X. Mao, X. Chen, R.J. Knize, Y. Lu, Synthesis of Ni-substituted Bi7Fe3Ti3O21 ceramics and their superior room temperature multiferroic properties. RSC Adv. 3, 18567–18572 (2013)

    ADS  Google Scholar 

  4. X. Zuo, J. Yang, B. Yuan, D. Song, Z. Tang, Structural, magnetic and dielectric properties of Aurivillius Bi6Fe2-xMnxTi3O18 (0 ≤x ≤ 0.8). RSC Adv. 4, 46704–46709 (2014)

    ADS  Google Scholar 

  5. B. Yuan, B., Yang, J., Chen, J., Zuo, X.Z., Yin, L.H., Tang, X.W., Zhu, X.B., Dai, J.M., Song, W.H., Sun, Y.P., Magnetic and dielectric properties of Aurivillius phase Bi6Fe2Ti3–2xNbxCoxO18 (0 ≤ x ≤ 0.4). Appl. Phys. Lett. 104, 062413 (2014)

    ADS  Google Scholar 

  6. X.Z. Zuo, M.L. Zhang, E.J. He, B. Guan, Y. Qin, J. Yang, X. Zhu, J. Dai, Structural, magnetic, and dielectric properties of W/Cr co-substituted Aurivillius Bi5FeTi3O15. J. Alloys Compd. 726, 1040–1046 (2017)

    Google Scholar 

  7. H. Sun, Y.J. Wu, T.S. Yao, Y. Lu, H. Shen, F. Huang, X. Chen, Electrical and magnetic properties of Aurivillius phase Bi5Fe1-xNixTi3O15 thin films prepared by chemical solution deposition. J. Alloys Compd. 765, 27–36 (2018)

    Google Scholar 

  8. J.A. Bartkowska, D. Bochenek, P. Niemiec, Multiferroic Aurivillius-type Bi6Fe2-xMnxTi3O18 (0 ≤ x ≤ 1.5) ceramics with negative dielectric constant. Appl. Phys. A 124, 823 (2018)

    ADS  Google Scholar 

  9. Y. Li, M.Y. Bian, N.N. Zhang, W. Bai, J. Yang, Y. Zhang, X. Tang, J. Chu, Mn-doping composition dependence of the structures, electrical and magnetic properties, and domain structure/switching of Aurivillius Bi5Ti3FeO15 films. Ceram. Int. 45, 8634–8639 (2019)

    Google Scholar 

  10. P. Xiong, J. Yang, Y.F. Qin, W.J. Huang, X.W. Tang, L.H. Yin, W.H. Song, J.M. Dai, X.B. Zhu, Y.P. Sun, Room temperature multiferroicity in Aurivillius compounds Bi6Fe2-x NixTi3O18 (0≤ x ≤ 1). Ceram. Int. 43, 4405–4410 (2017)

    Google Scholar 

  11. Y.H. Shu, Q.Q. Ma, L. Cao, Z. Ding, X. Chen, F. Yang, Bandgap tunability of Aurivillius Bi4NdTi3(Fe0.5M0.5)O15 (M=Cr, Ni, Fe Co, Mn) thin films. J. Alloys Compd 773, 934–939 (2019)

    Google Scholar 

  12. X.Y. Mao, W. Wang, X.B. Chen, Y.L. Lu, Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics. Appl. Phys. Lett. 95, 082901 (2009)

    ADS  Google Scholar 

  13. F.J. Yang, P. Su, C. Wei, X.Q. Chen, C.P. Yang, W.Q. Cao, Large magnetic response in (Bi4Nd)Ti3(Fe0.5Co0.5)O15 ceramic at room-temperature. J. Appl. Phys. 110, 126102 (2011)

    ADS  Google Scholar 

  14. W.P. Wang, X. Shen, W. Wang, X.X. Guan, Y. Yao, Y.G. Wang, R.C. Yu, The evolution of microstructure and magnetic properties of the bismuth layer compounds with Cobalt ions substitution. Inorg. Chem. 56, 3207–3213 (2017)

    Google Scholar 

  15. X. Zuo, S. Zhu, J. Bai, E. He, Z. Hui, P. Zhang, D. Song, W. Song, J. Yang, X. Zhu, J. Dai, Enhanced multiferroicity and narrow band gap in B-site Co-doped Aurivillius Bi5FeTi3O15. Ceram. Int. 45, 137–143 (2019)

    Google Scholar 

  16. C.H. Wang, Z.F. Liu, L. Yu, Z.M. Tian, S.L. Yuan, Structural, magnetic and dielectric properties of Bi5−xLaxTi3Co0.5Fe0.5O15 ceramics. Mater. Sci. Eng. B 176, 1243–1246 (2011)

    Google Scholar 

  17. H. Qi, Y. Qi, M. Xiao, Leakage mechanisms in rare-earth (La, Nd) doped Bi4Ti3O12 ferroelectric ceramics. J Mater Sci. Mater. Electron 25, 1325–1330 (2014)

    Google Scholar 

  18. M.S. Alkathy, F.L. Zabotto, F.P. Milton, J.A. Eiras, Bandgap tuning in samarium-modified bismuth titanate by site engineering using iron and cobalt co-doping for photovoltaic application. J. Alloys Compd. 908, 164222 (2022)

    Google Scholar 

  19. U.A. Azlan, A. Fauzi, M. Noor, A study on structural stability of bismuth titanate with lanthanum doping for improved ferroelectric properties. Bull. Mater. Sci. 40, 493–498 (2017)

    Google Scholar 

  20. M.A. Wederni, W. Hzez, A. Rached, R. Meftah, H. Rahmouni, K. Khirouni, S. Alaya, and R. J. 2022 Martin-Palma, Effect of co doping on the electric and dielectric properties of Bi3. 8−xEr0.2YbxTi3O12 lead-free ceramics, J. Alloys Compd. 898: 162899.

  21. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682–684 (1999)

    ADS  Google Scholar 

  22. J.F. Scott, Ferroelectric Memories (Springer Press, Berlin, 2000)

    Google Scholar 

  23. X.Q. Chen, F.J. Yang, W.Q. Cao, D.Y. Wang, K. Chen, Room temperature magnetoelectric coupling in Bi4(Ti1Fe2)O12-δ system. J. Phys. D: Appl. Phys. 43, 065001 (2010)

    ADS  Google Scholar 

  24. X.Q. Chen, F.J. Yang, W.Q. Cao, H. Wang, C.P. Yang, D.Y. Wang, K. Chen, Enhanced multiferroic characteristics in Fe-doped Bi4Ti3O12 ceramics. Solid State Commun. 150, 1221–1224 (2010)

    ADS  Google Scholar 

  25. J. Paul, S. Bhardwaj, K.K. Sharma, R.K. Kotnala, R. Kumar, Room temperature multiferroic behavior and magnetoelectric coupling in Sm/Fe modified Bi4Ti3O12 ceramics synthesized by solid state reaction method. J. Alloys Compd. 634, 58–64 (2015)

    Google Scholar 

  26. J. Paul, K.K. Sumit Bhardwaj, R.K. Sharma, R.K. Kotnala, Room temperature multiferroic properties and magnetoelectric coupling in Sm and Ni substituted Bi4-xSmxTi3-xNixO12-δ (x = 0, 002, 00.5, 00.7) ceramics. J. Appl. Phys. 115, 204909 (2014)

    ADS  Google Scholar 

  27. J. Paul, S. Bhardwaj, K.K. Sharma, R.K. Kotnala, R. Kumar, Room temperature multiferroic properties and magnetoelectric coupling in Bi4-xSmxTi3-xCoxO12-δ in ceramics. J. Mater. Sci. 49, 6056–6066 (2014)

    ADS  Google Scholar 

  28. V.A. Khomchenko, G.N. Kakazei, Y.G. Pogorelov, J.P. Araujo, M.V. Bushinsky, D.A. Kiselev, A.L. Kholkin, J.A. Paixão, Effect of Gd substitution on ferroelectric and magnetic properties of Bi4Ti3O12. Mater. Lett. 64, 1066–1068 (2010)

    Google Scholar 

  29. C. Lavado, M.G. Stachiotti, Fe3+/Nb5+ co-doping effects on the properties of Aurivillius Bi4Ti3O12 ceramics. J. Alloys Compd. 713, 914–919 (2018)

    Google Scholar 

  30. M. Algueró, M. Pérez-Cerdán, R.P. del Real, J. Ricote, A. Castro, Novel Aurivillius Bi4Ti3−2xNbxFexO12 phases with increasing magnetic-cation fraction until percolation: a novel approach for room temperature multiferroism. J. Mater. Chem. C 8, 12457–12469 (2020)

    Google Scholar 

  31. M. Algueró, J. Sanz-Mateo, R.P. del Real, J. Ricote, C.M. Fernández-Posada, A. Castro, Multiferroic Aurivillius Bi4Ti2-x Mnx Fe0.5Nb0.5O12(n = 3) compounds with tailored magnetic interactions. Dalton Trans. 50, 17062–17074 (2021)

    Google Scholar 

  32. C. Lavado, A.F. Rébola, R. Machado, M.G. Stachiotti, Multiferroic properties of three-layer Aurivillius compound Bi4TiFeNbO12: A first-principles and experimental study. Sol. St. Comm. 320, 114028 (2020)

    Google Scholar 

  33. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, A. Kumar, Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co0.5Ti0.5)O3–BiFeO3 solid solution. RSC Adv. 8, 36939–36950 (2018)

    ADS  Google Scholar 

  34. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Structural, electrical and magnetic properties of eco-friendly complex multiferroic material: Bi(Co0.35Ti0.35Fe0.30)O3. Ceram. Int. 45, 822–831 (2019)

    Google Scholar 

  35. J.R. Esquivel-Elizondo, B.B. Hinojosa, J.C. Nino, Bi2Ti2O7: It is not what you have read. Chem. Mater. 23, 4965–4974 (2011)

    Google Scholar 

  36. A. Khokhar, M.L.V. Mahesh, A.R. James, P.K. Goyal, K. Sreenivas, Sintering characteristics and electrical properties of BaBi4Ti4O15 ferroelectric ceramics. J. Alloys Compd. 581, 150–159 (2013)

    Google Scholar 

  37. Z. Chen, H. Jiang, W. Jin, C. Shi, Enhanced photocatalytic performance over Bi4Ti3O12 nanosheets with controllable size and exposed 0 0 1 facets for Rhodamine B degradation. Appl. Catal. Environ. 180, 698–706 (2016)

    Google Scholar 

  38. H. Zhang, H. Yan, H. Ning, M.J. Reece, M. Eriksson, Z. Shen, Y. Kan, P. Wang, The grain size effect on the properties of Aurivillius phase Bi3.15Nd0.85Ti3O12 ferroelectric ceramics. Nanotechnology 20, 385708 (2009)

    ADS  Google Scholar 

  39. H. Chen, B. Shen, J. Xu, J. Zhai, The grain size-dependent electrical properties of Bi4Ti3O12 piezoelectric ceramics. J. Alloy. Compd. 551, 92–97 (2013)

    Google Scholar 

  40. Z. Yu, B. Yu, Y. Liu, P. Zhou, J. Jiang, K. Liang, Y. Lu, H. Sun, X. Chen, Z. Ma, T. Zhang, C. Huang, Y. Qi, Enhancement of multiferroic properties of Aurivillius Bi5Ti3FeO15 ceramics by Co doping. Ceram. Int. 43, 14996–15001 (2017)

    Google Scholar 

  41. V.B. Santos, J.-C. M’Peko, M. Mir, V.R. Mastelaro, A.C. Hernandes, J. Eur. Ceram. Soc. 29, 751–756 (2009)

    Google Scholar 

  42. Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino et al., Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys Rev B. 70, 024107(1)-024107(8) (2004)

    ADS  Google Scholar 

  43. Z. Li, K. Tao, J. Ma, Z. Gao, V. Koval, C. Jiang, G. Viola, H. Zhang, A. Mahajan, J. Cao, M. Cain, I. Abrahams, C. Nan, C. Jia, H. Yan, Bi3.25La0.75Ti2.5Nb0.25(Fe0.5Co0.5)0.25O12, a single phase room temperature multiferroic. J Mater Chem C 6, 2733–2740 (2018)

    Google Scholar 

  44. J. Xiao, H.F. Zhang, Y. Xue, Z.W. Lu, X.Q. Chen, P. Su, F.J. Yang, X.B. Zeng, The influence of Ni-doping concentration on multiferroic behaviors in Bi4NdTi3FeO15 ceramics. Ceram. Int. 41, 1087–1092 (2015)

    Google Scholar 

  45. V. Koval, Y. Shi, I. Skorvanek, G. Viola, R. Bures, K. Saksl, P. Roupcova, M. Zhang, Ch. Jia, H. Yan, Cobalt-induced structural modulation in multiferroic Aurivillius-phase oxides. J. Mater. Chem. C 8, 8466–8483 (2020)

    Google Scholar 

  46. X.Z. Zuo, J. Yang, B. Yuan, D.P. Song, X.W. Tang, K.J. Zhang, X.B. Zhu, W.H. Song, J.M. Dai, Y.P. Sun, Enhanced multiferroic properties of Aurivillius Bi6Fe1.4Co0.6Ti3O18thin films by magnetic field annealing. Appl. Phys. Lett. 107, 222901 (2015)

    ADS  Google Scholar 

  47. X.Q. Chen, Y. Xue, Z.W. Lu, J. Xiao, J. Yao, Z.W. Kang, P. Su, F.J. Yang, X.B. Zeng, H.Z. Sun, Magnetodielectric properties of Bi4NdTi3Fe0.7Co0.3O15 multiferroic system. J. Alloys. Compd. 622, 288–291 (2015)

    Google Scholar 

  48. H. Sun, X.M. Lu, T.T. Xu, J. Su, Y.M. Jin, C.C. Ju, F.Z. Huang, J.S. Zhu, Study of multiferroic properties in Bi5Fe0.5Co0.5Ti3O15 thin films. J. Appl. Phys. 111, 124116 (2012)

    ADS  Google Scholar 

  49. X. Zuo, E. He, Z. Hui et al., Magnetic, dielectric and magneto-dielectric properties of Aurivillius phase Bi4.25Nd0.75FeTi2(NbCo)0.5O15 ceramics. J Mater Sci: Mater Electron 30, 16337–16346 (2019)

    Google Scholar 

  50. S. Liu, S. Yan, H. Luo, L. Yao, Z. Hu, S. Huang, L. Deng, Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics. J. Mater. Sci. 53, 1014–1023 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Augusto Roman and Laura Steren for the magnetic measurements. We also thank Pablo Diaz for SEM measurements. This work was sponsored by Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) de la República Argentina. MGS thanks also support from Consejo de Investigaciones de la Universidad Nacional de Rosario (CIUNR). Eiras and Alkathy are greatly indebted to the Sao Paulo Research Foundation (FAPESP: Grant no# 2017/13769-1) and (FAPESP: Grant no# 2019/03110-8).

Funding

This research was funded by CONICET, Grant no [PIP 00249], FAPESP Grant nos [2017/13769-1, 2019/03110-8].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Stachiotti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavado, C., Alkathy, M.S., Eiras, J.A. et al. Room-temperature multiferroic behavior in the three-layer Aurivillius compound Bi3.25La0.75Ti2Nb0.5(Fe1-x Cox)0.5O12. Appl. Phys. A 129, 147 (2023). https://doi.org/10.1007/s00339-023-06445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06445-z

Keywords

Navigation