Skip to main content
Log in

An investigation into the effect of polyvinylpyrrolidone on the size and distribution of nickel catalyst particles for controlling CNTs’ morphology and growth mechanisms in fabricated hybrid CF-CNT nanocomposite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Despite the considerable research efforts devoted in recent years to the use of carbon nanotube (CNTs) composites, the main challenge still to be addressed is obtaining the appropriate catalyst particle size and distribution to control composite morphology and properties. In order to fabricate carbon felt–carbon nanotube nanocomposites via the chemical vapor infiltration (CVI) method, use was made for the first time in this study of the polyvinylpyrrolidone (PVP) polymer to achieve the reduced size and more uniform distribution of nickel catalyst particles. The results obtained from morphological analyses (SEM, FESEM, TEM, and HRTEM images), phase and chemical structure investigations (FTIR, Raman spectroscopy, XRD, and XPS tests), and specific surface area determinations (BET test) conducted on samples produced with and without the polymer were compared to evaluate the effects of using PVP. It was found that the polymer was able to reduce nickel particle size, improve their distribution on fibers, and provide more nucleation sites for CNTs by preventing their agglomeration. Moreover, this phenomenon leads to dramatic enhancements in the chemical activity of catalytic particles that would ultimately give rise to the following three significant results: (1) surface destruction and carbon infiltration from the felt fibers’ surface to help form CNTs, (2) CNT growth model changing from a “tip-growth” to a “base-growth” one, and (3) a reduction of 57% in CNTs’ diameter and wall thickness. These morphological changes in the nanocomposite samples will, in turn, lead to a fivefold increase in the specific surface area of the nanocomposites produced using PVP to 262.45 m2/g after 10 h of the CVI process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. L.E. Murr, K.F. Soto, Mater. Charact. 55, 50 (2005)

    Google Scholar 

  2. G. Du, Y. Zhou, B. Xu, Mater. Charact. 61, 427 (2010)

    Google Scholar 

  3. M. Hashempour, A. Vicenzo, F. Zhao, M. Bestetti, Mater. Charact. 92, 64 (2014)

    Google Scholar 

  4. L. Wenzhi, X. Sishen, L. Wei, Z. Rian, Z. Yun, Z. Weiya, W. Gang, Q. Luxi, J. Mater. Sci. 34, 2745 (1999)

    Google Scholar 

  5. A. Yahyazadeh, B. Khoshandam, Results Phys. 7, 3826 (2017)

    ADS  Google Scholar 

  6. H. Elahi Davaji, F. Shamoradi, M. Panjepour, M. Ahmadian, Carbon Lett. 32, 201 (2022)

    Google Scholar 

  7. M. Maghrebi, A.A. Khodadadi, Y. Mortazavi, A. Sane, M. Rahimi, Y. Shirazi, Z. Tsakadze, S. Mhaisalkar, Appl. Phys. A 97, 417 (2009)

    ADS  Google Scholar 

  8. Y. Tu, Z.P. Huang, D.Z. Wang, J.G. Wen, Z.F. Ren, Appl. Phys. Lett. 80, 4018 (2002)

    ADS  Google Scholar 

  9. R.B. Mathur, S. Chatterjee, B.P. Singh, Compos. Sci. Technol. 68, 1608 (2008)

    Google Scholar 

  10. H. Jiang, Y. Wang, C. Wang, X. Xu, M. Li, Z. Xu, H. Tan, Y. Wang, Ceram. Int. 48, 29695 (2022)

    Google Scholar 

  11. K. Wang, K. Chizari, Y. Liu, I. Janowska, S.M. Moldovan, O. Ersen, A. Bonnefont, E.R. Savinova, L.D. Nguyen, C. Pham-Huu, Appl. Catal. A 392, 238 (2011)

    Google Scholar 

  12. F. Shamoradi, M. Panjepour, R. Emadi, M. Ghiaci, J. Nanoparticle Res. (2022). https://doi.org/10.1007/s11051-022-05575-4

    Article  Google Scholar 

  13. L. Cui, M. Ji, L. Mao, S. Kang, Y. Wang, H. Shi, J. Electrochem. Soc. 163, A2017 (2016)

    Google Scholar 

  14. J. Han, J.S. Chae, J.C. Kim, K.C. Roh, Carbon 163, 402 (2020)

    Google Scholar 

  15. D. Schopf, M. Es-Souni, Appl. Phys. A 122, 1 (2016)

    Google Scholar 

  16. J.M. Rosolen, E.Y. Matsubara, M.S. Marchesin, S.M. Lala, L.A. Montoro, S. Tronto, J. Power Sour. 162, 620 (2006)

    ADS  Google Scholar 

  17. M. Park, Y.J. Jung, J. Kim, H. IlCho, J. Cho, Nano. Lett. 13, 4833 (2013)

    ADS  Google Scholar 

  18. D.B. de Freitas Neto, E.Y. Matsubara, M. Dirican, G.F. Salussolia, X. Zhang, J.M. Rosolen, Diam. Relat. Mater. 115, 108353 (2021)

    ADS  Google Scholar 

  19. X. Ma, S.T. Yang, H. Tang, Y. Liu, H. Wang, J. Colloid Interface Sci. 448, 347 (2015)

    ADS  Google Scholar 

  20. H. Li, Y. He, Y. Hu, X. Wang, ACS Appl. Mater. Interfaces 10, 9362 (2018)

    Google Scholar 

  21. N.M. Mubarak, E.C. Abdullah, N.S. Jayakumar, J.N. Sahu, J. Ind. Eng. Chem. 20, 1186 (2014)

    Google Scholar 

  22. J. Liu, S. Fan, H. Dai, MRS Bull. 29, 244 (2004)

    Google Scholar 

  23. P. Mierczynski, S. Dubkov, K. Vasilev, T. Maniecki, E. Kitsyuk, G. Yeritsyan, M.I. Szynkowska, A. Trifonov, S. Gavrilov, D. Gromov, J. Market. Res. 12, 512 (2021)

    Google Scholar 

  24. S. Tu, Q. Wang, C.S. Ramachandran, Ceram. Int. 48, 28258 (2022)

    Google Scholar 

  25. J. Lin, H. Jin, X. Ge, Y. Yang, G. Huang, J. Wang, F. Li, H. Li, S. Wang, Diam. Relat. Mater. 115, 108347 (2021)

    ADS  Google Scholar 

  26. B.P. Singh, V. Choudhary, V.N. Singh, R.B. Mathur, Appl. Nanosci. (Switzerland) 4, 997 (2014)

    ADS  Google Scholar 

  27. C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y. Yan, Nano. Lett. 4, 345 (2004)

    ADS  Google Scholar 

  28. A. Gohier, C.P. Ewels, T.M. Minea, M.A. Djouadi, Carbon 46, 1331 (2008)

    Google Scholar 

  29. E.F. Kukovitsky, S.G. L’vov, N.A. Sainov, V.A. Shustov, L.A. Chernozatonskii, Chem. Phys. Lett. 355, 497 (2002)

    ADS  Google Scholar 

  30. D.D. Saputri, A.M. Jan’ah, T.E. Saraswati, IOP Conf. Ser. 959, 012019 (2020)

    Google Scholar 

  31. E.Y. Matsubara, J.M. Rosolen, S.R.P. Silva, J. Appl. Phys. 104, 054303 (2008)

    ADS  Google Scholar 

  32. S.H. Lee, J. Park, H.R. Kim, J. Lee, K.H. Lee, RSC Adv. 5, 41894 (2015)

    ADS  Google Scholar 

  33. J. Sun, H. Li, L. Feng, Y. Jia, Q. Song, K. Li, Appl. Surf. Sci. 403, 95 (2017)

    ADS  Google Scholar 

  34. W. Fan, Y. Wang, C. Wang, J. Chen, Q. Wang, Y. Yuan, F. Niu, Appl. Surf. Sci. 364, 539 (2016)

    ADS  Google Scholar 

  35. Y.K. Du, P. Yang, Z.G. Mou, N.P. Hua, L. Jiang, J. Appl. Polym. Sci. 99, 23 (2006)

    Google Scholar 

  36. K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Dalton Trans. 44, 17883 (2015)

    Google Scholar 

  37. Y. Huang, Y. Zheng, W. Song, Y. Ma, J. Wu, L. Fan, Compos. A 42, 1398 (2011)

    Google Scholar 

  38. S.M. Masoudpanah, J. Mater. Res. Technol 20, 3264 (2022)

    Google Scholar 

  39. T.T. Co, T.K.A. Tran, T.H.L. Doan, T.D. Diep, J. Chem 1 (2021)

  40. X. Li, T. Xu, Z. Liang, V.S. Amar, R. Huang, B.K. Maddipudi, R.V. Shende, H. Fong, Polymers 13, 1 (2021)

    Google Scholar 

  41. Y. Wang, B. Suo, Y. Shi, H. Yuan, C. Zhu, Y. Chen, ACS Appl. Mater. Interfaces 12, 40692 (2020)

    Google Scholar 

  42. J.V. Rojas, M. Toro-Gonzalez, M.C. Molina-Higgins, C.E. Castano, Mater. Sci. Eng. B 205, 28 (2016)

    Google Scholar 

  43. S. Savilov, E. Suslova, V. Epishev, E. Tveritinova, Y. Zhitnev, A. Ulyanov, K. Maslakov, O. Isaikina, Nanomaterials 11, 1 (2021)

    Google Scholar 

  44. F. Wu, Z. Liu, T. Xiu, B. Zhu, I. Khan, P. Liu, Q. Zhang, B. Zhang, Compos. Part B 215, 108814 (2021)

    Google Scholar 

  45. S. D’Addato, V. Grillo, S. Altieri, R. Tondi, S. Valeri, S. Frabboni, J. Phys. Condens. Matter 23, 175003 (2011)

    ADS  Google Scholar 

  46. J. Wang, Q. Zhao, H. Hou, Y. Wu, W. Yu, X. Ji, L. Shao, RSC Adv. 7, 14152 (2017)

    ADS  Google Scholar 

  47. P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M. Abd-Lefdil, R. Díaz, Appl. Surf. Sci. 258, 8807 (2012)

    ADS  Google Scholar 

  48. G.S. Choi, Y.S. Cho, S.Y. Hong, J.B. Park, K.H. Son, D.J. Kim, J. Appl. Phys. 91, 3847 (2002)

    ADS  Google Scholar 

  49. Y.H. Lee, Y.C. Choi, Y.M. Shin, S.C. Lim, D.J. Bae, B.S. Lee, D.C. Chung, J. Appl. Phys. 88, 4898 (2000)

    ADS  Google Scholar 

  50. D.K. Singh, P.K. Iyer, P.K. Giri, Diam. Relat. Mater. 19, 1281 (2010)

    ADS  Google Scholar 

  51. P. Li, T. Li, J.H. Zhou, Z.J. Sui, Y.C. Dai, W.K. Yuan, D. Chen, Microporous Mesoporous Mater. 95, 1 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express great appreciation to the Iran National Science Foundation (INSF) for the financial support of this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, samples fabrication, data collection, experiments, and analysis were performed by [FS]. The first draft of the manuscript was written by [FS] with support from [MP], [RE], and [MG]. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Masoud Panjepour.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamoradi, F., Panjepour, M., Emadi, R. et al. An investigation into the effect of polyvinylpyrrolidone on the size and distribution of nickel catalyst particles for controlling CNTs’ morphology and growth mechanisms in fabricated hybrid CF-CNT nanocomposite. Appl. Phys. A 129, 153 (2023). https://doi.org/10.1007/s00339-023-06443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06443-1

Keywords

Navigation