Skip to main content
Log in

Influence of liquid dielectric medium on microwave-metal discharge-based drilling of AISI 304 stainless steel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Microwave-metal discharge-based drilling of metallic materials involves use of thermal energy from the plasma column for material removal. However, poor control over plasma generated in atmospheric air causes wide heat-affected zone (HAZ) and poor surface integrity around the drilled hole. The present work is an attempt to minimize drilling-related defects by incorporating circulating liquid dielectric as the drilling media. Performance of microwave drilling was assessed after machining in liquid dielectric and atmospheric air media. Stainless steel (AISI 304) and pure tungsten were chosen as the work and tool materials, respectively. Process performance parameters, such as diametrical overcut, circularity, HAZ and material removal rate (MRR), were evaluated for the drilling intervals of 40, 50 and 60 s. It was observed that the dissipation of microwave power within the liquid dielectric medium reduces the intensity of the plasma column. In addition, pressure applied by the liquid dielectric medium over the plasma column aids in its confinement. As a result, a relatively less intense and more uniform plasma column is generated in the liquid dielectric medium, which reduces erosive action on the work material. This controlled removal of work material results in a significant reduction (up to 90%) in HAZ. The uniform nature of plasma column yielded better hole circularity in liquid dielectric medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

AISI:

American iron and steel institute

DOC:

Diametrical overcut (%)

EDS:

Energy dispersive X-ray spectroscopy

FESEM:

Field emission scanning electron microscope

HAZ:

Heat-affected zone (mm2)

MRR:

Material removal rate (mg.s1)

MWD:

Microwave drilling

\(A_{HAZ}\) :

Area of hole and HAZ (mm2)

\(A_{h}\) :

Area of the drilled hole (mm2)

\(C\) :

Circularity

\(D_{max}\) :

Minimum circumscribing diameter at entry (mm)

\(D_{min}\) :

Maximum inscribing diameter at entry (mm)

\(D_{t}\) :

Tool diameter (mm)

\(d_{pa}\) :

Plasma diameter in air medium (mm)

\(d_{pl}\) :

Plasma diameter in liquid dielectric medium (mm)

\(E\) :

Electric field intensity (V.m1)

\(E_{0}\) :

Electric field intensity at the surface (V.m1)

\(E_{max}\) :

Maximum value of electric field intensity (V.m1)

\(f\) :

Frequency (Hz)

\(g\) :

Acceleration due to gravity

\(H\) :

Magnetic field intensity (A.m1)

\(H_{t}\) :

Tangential component of magnetic field (A.m1)

\(h_{d}\) :

Height of liquid dielectric column (mm)

\(J_{s}\) :

Surface current (A.m1)

\(k_{0}\) :

Wavenumber

\(\Delta L\) :

Longitudinal tool wear (mm)

\(p_{a}\) :

Pressure exerted by the atmospheric air (N.m2)

\(p_{atm}\) :

Atmospheric pressure (N.m2)

\(p_{d}\) :

Pressure exerted by the liquid dielectric (N.m2)

\(P_{l}\) :

Power dissipated by the dielectric medium (W.m3)

\(P_{s}\) :

Power dissipated due to the surface impedance (W.m3)

\(P_{t}\) :

Total power dissipated (W.m3)

\(R_{s}\) :

Surface resistivity (Ω)

\(R^{2}\) :

Coefficient of determination

\(t\) :

Drilling time (s)

\(\beta\) :

Regression coefficient

\(\gamma\) :

Regression error

\(\delta_{s}\) :

Skin depth (µm)

\(\varepsilon ^{\prime}\) :

Dielectric constant

\(\varepsilon_{0}\) :

Permittivity of free space (F.m1)

\(\varepsilon_{r}\) :

Relative permittivity

\(\varepsilon ^{\prime\prime}\) :

Dielectric loss factor (F.m1)

\(\eta_{0}\) :

Impedance of the free space (377Ω)

\(\mu\) :

Mean

\(\mu_{r}\) :

Relative permeability

\(\mu ^{\prime\prime}\) :

Magnetic loss factor (H.m1)

\(\rho_{d}\) :

Density of liquid dielectric (kg.m3)

\(\sigma\) :

Standard deviation

\(\sigma_{e}\) :

Electrical conductivity (S.m1)

\(\sigma_{i}\) :

Ionic conductivity (S.m1)

\(\omega\) :

Angular frequency (rad.s1)

References

  1. E. Jerby, V. Dikhtiar, U.S. Patent No. 6,114,676. Washington, DC: U.S. Patent and Trademark Office (2000)

  2. E. Jerby, V. Dikhtyar, O. Aktushev, U. Grosglick, Science 298, 587 (2002)

    Article  ADS  Google Scholar 

  3. Y. Meir, E. Jerby, IEEE Trans. Microw. Theory Tech. 60, 2665 (2012)

    Article  ADS  Google Scholar 

  4. Y. Eshet, R.R. Mann, A. Anaton, T. Yacoby, A. Gefen, E. Jerby, IEEE Trans. Biomed. Eng. 53, 1174 (2006)

    Article  Google Scholar 

  5. E. Jerby V. Dikhtyar (2006). Adv. Microw. Radio Freq. Process. Rep. Int. High Freq. Heat. 687: 694

  6. T.J. George, A.K. Sharma, P. Kumar, I-Manager’s J. Mech. Eng. 2, 1 (2012)

    Google Scholar 

  7. A. Singh, A.K. Sharma, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Article  ADS  Google Scholar 

  8. A. Singh, A. K. Sharma, In Advances in Forming, Machining and Automation, eds. By M Shunmugam 2019 Kanthababu Springer Singapore 219

  9. N.K. Lautre, A.K. Sharma, S. Das, P. Kumar, J. Therm. Sci. Eng. Appl. 7, 876 (2015)

    Article  Google Scholar 

  10. G. Kumar, A.K. Sharma, J. Manuf. Process. 33, 184 (2018)

    Article  Google Scholar 

  11. G. Kumar, R.R. Mishra, A.K. Sharma, J. Therm. Sci. Eng. Appl. 13, 1 (2021)

    Google Scholar 

  12. N. Natarajan, P. Suresh, Int. J. Adv. Manuf. Technol. 77, 1741 (2015)

    Article  Google Scholar 

  13. I. Arrizubieta, A. Lamikiz, S. Martínez, E. Ukar, I. Tabernero, F. Girot, Int. J. Mach. Tools Manuf. 75, 55 (2013)

    Article  Google Scholar 

  14. J. Sun, W. Wang, Q. Yue, C. Ma, J. Zhang, X. Zhao, Z. Song, Appl. Energy 175, 141 (2016)

    Article  Google Scholar 

  15. M.P. Jahan, Y.S. Wong, Int. J. Adv. Manuf. Technol. 46, 1145 (2010)

    Article  Google Scholar 

  16. A. Koutsospyros, W. Braida, C. Christodoulatos, D. Dermatas, N. Strigul, J. Hazard. Mater. 136, 1 (2006)

    Article  Google Scholar 

  17. M.P. Jahan, Y.S. Wong, M. Rahman, J. Mater. Process. Technol. 209, 1706 (2009)

    Article  Google Scholar 

  18. Y.A. Lebedev, Polymers (Basel). 13, 55 (2021)

    Google Scholar 

  19. J. Tao, A.J. Shih, J. Ni, J. Manuf. Sci. Eng. 130, 0110021 (2008)

    Article  Google Scholar 

  20. P. Kiran, S. Mohanty, A.K. Das, Mater. Manuf. Process. 37, 640 (2022)

    Article  Google Scholar 

  21. A.P. Arun, S.P.P. Hariharan, Mater. Manuf. Process. 22, 1 (2022)

    Google Scholar 

  22. D. Cai, Y. Tan, L. Zhang, J. Sun, Y. Zhang, L. Li, Q. Zhang, G. Zou, Z. Song, Y. Bai, J. Energy Inst. 100, 277 (2021)

    Article  Google Scholar 

  23. P. Mishra, G. Sethi, A. Upadhyaya, Metall. Mater. Trans. Sci. 37, 839 (2006)

    Article  ADS  Google Scholar 

  24. J. Sun, W. Wang, C. Zhao, Y. Zhang, C. Ma, Q. Yue, Ind. Eng. Chem. Res. 53, 2042 (2014)

    Article  Google Scholar 

  25. R.R. Mishra, A.K. Sharma, Compos. Part A Appl. Sci. Manuf. 81, 78 (2016)

    Article  Google Scholar 

  26. S. Tamang, S. Aravindan, Appl. Therm. Eng. 162, 114250 (2019)

    Article  Google Scholar 

  27. C.Y. Cui, X.G. Cui, X.D. Ren, M.J. Qi, J.D. Hu, Y.M. Wang, Appl. Surf. Sci. 305, 817 (2014)

    Article  ADS  Google Scholar 

  28. H.T. Lee, T.Y. Tai, J. Mater. Process. Technol. 142, 676 (2003)

    Article  Google Scholar 

  29. J.C. Rebelo, A. Morao Dias, D. Kremer, J.L. Lebrun, J. Mater. Process. Technol. 84, 90 (1998)

    Article  Google Scholar 

  30. N.K. Lautre, A.K. Sharma, P. Kumar, S. Das, J. Mater. Process. Technol. 225, 151 (2015)

    Article  Google Scholar 

  31. P.J. Liew, J. Yan, T. Kuriyagawa, Appl. Surf. Sci. 276, 731 (2013)

    Article  ADS  Google Scholar 

  32. M. Bhaumik, K. Maity, Part. Sci. Technol. 37, 977 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for the financial assistance provided for the work, under the research grant no. CRG/2018/004305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apurbba Kumar Sharma.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Singh, A., Sharma, A.K. et al. Influence of liquid dielectric medium on microwave-metal discharge-based drilling of AISI 304 stainless steel. Appl. Phys. A 129, 150 (2023). https://doi.org/10.1007/s00339-023-06441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06441-3

Keywords

Navigation