Skip to main content
Log in

Electrical properties of Al/p-Si diode with AlN interface layer under temperature and illumination stimuli for sensing applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Al/AlN/p-Si diode was fabricated via thermal evaporation. The electrical properties of the structure were examined under various temperatures, illuminations, and frequencies. Temperature-dependent electrical properties were investigated using several different methods, which are the Thermionic Emission theory, Norde Function, and Cheung&Cheung Functions. The ideality factor, zero-bias barrier height, and series resistance values obtained from the Current–Voltage-Temperature plot of the diode were compared with each other. It was seen that the values obtained from three different methods were in good agreement with each other. Additionally, current–voltage measurements depending on the illumination intensity showed that the designed structure responds to light. The time-dependent photocurrent of the structure was examined with the switch on and off. The root mean square value for Aluminium nitride interfacial layer was found to be 4 nm from the Atomic Force Microscope measurements. Experimental results revealed that the fabricated structure is a candidate for sensing applications such as temperature or light sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Authors can confirm that all relevant data are included in the article and/or its supplementary information files.

References

  1. X. Lü, S. He, H. Lian, S. Lv, Y. Shen, W. Dong, Q. Duan, Structural, electronic, and optical properties of pristine and bilayers of hexagonal III-V binary compounds and their hydrogenated counterparts Appl. Surf. Sci. 531, 147262 (2020)

    Google Scholar 

  2. D. Çakır, D. Kecik, H. Sahin, E. Durgun, F.M. Peeters, Realization of a p–n junction in a single layer boron-phosphide Phys. Chem. Chem. Phys. 17, 13013–13020 (2015)

    Google Scholar 

  3. T. Akiyama, T. Kawamura, T. Ito, Computational discovery of stable phases of graphene and h-BN van der Waals heterostructures composed of group III–V binary compounds Appl. Phys. Lett. 118, 023101 (2021)

    Google Scholar 

  4. H. Wu, R. Zheng, Y. Guo, Z. Yan, Fabrication and characterisation of non-polar M-plane AlN crystals and LEDs Mater. Res Innov (2015). https://doi.org/10.1179/1432891714Z.0000000001268

    Article  Google Scholar 

  5. A.R. Acharya, Group III–nitride semiconductors: preeminent materials for modern electronic and optoelectronic applications. Himal. Phys. 5, 22–26 (2015)

    Google Scholar 

  6. J. Li, K.B. Nam, M.L. Nakarmi, J.Y. Lin, H.X. Jiang, P. Carrier, S.-H. Wei, Band structure and fundamental optical transitions in wurtzite AlN. Appl. Phys. Lett. 83, 5163–5165 (2003)

    ADS  Google Scholar 

  7. G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande, The intrinsic thermal conductivity of AIN. J. Phys. Chem. Solids 48, 641–647 (1987)

    ADS  Google Scholar 

  8. R. Beiranvand, S. Valedbagi, Electronic and optical properties of advance semiconductor materials: BN. AlN and GaN Nanos. First Principles Optik (Stuttg). 127, 1553–1560 (2016)

    Google Scholar 

  9. N. Sanders, D. Bayerl, G. Shi, K.A. Mengle, E. Kioupakis, Electronic and optical properties of two-dimensional GaN from first-principles. Nano. Lett. 17, 7345–7349 (2017)

    ADS  Google Scholar 

  10. C. Xiong, W.H.P. Pernice, X. Sun, C. Schuck, K.Y. Fong, H.X. Tang, Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics New. J. Phys. 14, 095014 (2012)

    Google Scholar 

  11. H. Yamashita, K. Fukui, S. Misawa, S. Yoshida, Optical properties of AlN epitaxial thin films in the vacuum ultraviolet region. J. Appl. Phys. 50, 896–898 (1979)

    ADS  Google Scholar 

  12. I. Karami, S.A. Ketabi, Tuning of the electronic and optical properties of AlN monolayer by fluorination: Study of many-body effects. Comput. Condens. Matter 28, e00564 (2021)

    Google Scholar 

  13. N. Ben Hassine, D. Mercier, P. Renaux, G. Parat, S. Basrour, P. Waltz, C. Chappaz, P. Ancey, S. Blonkowski, Dielectrical properties of metal-insulator-metal aluminum nitride structures: Measurement and modeling. J. Appl. Phys. 105, 044111 (2009)

    ADS  Google Scholar 

  14. D. Kecik, C. Bacaksiz, R.T. Senger, E. Durgun, Layer- and strain-dependent optoelectronic properties of hexagonal AlN. Phys. Rev. B 92, 165408 (2015)

    ADS  Google Scholar 

  15. G. Esteves, S.D. Habermehl, P.J. Clews, C. Fritch, B.A. Griffin, AlN/SiC MEMS for high-temperature applications. J. Microelectromech. Syst. 28, 859–864 (2019)

    Google Scholar 

  16. Y. Taniyasu, M. Kasu, T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325–328 (2006)

    ADS  Google Scholar 

  17. Z. Azman, N. Nayan, M.M.I.M. Hasnan, A.S.A. Bakar, M.H. Mamat, M.Z.M. Yusop, Impedance spectroscopy analysis of Al/100-plane AlN/p-Si MIS prepared by HiPIMS method for tailoring dielectric properties. Int. J. Nanotechnol. 19, 404–417 (2022)

    ADS  Google Scholar 

  18. Y.C. Kong, L.Q. Hu, Y.D. Zheng, C.H. Zhou, C. Chen, S.L. Gu, R. Zhang, P. Han, R.L. Jiang, Y. Shi, Charge storage characteristics in Al/AlN/Si metal–insulator–semiconductor structure based on deep traps in AlN layer. Appl. Phys. A 90, 545–548 (2008)

    ADS  Google Scholar 

  19. H. Altuntas, T. Bayrak, S. Kizir, A. Haider, N. Biyikli, Electrical conduction and dielectric relaxation properties of AlN thin films grown by hollow-cathode plasma-assisted atomic layer deposition. Semicond. Sci. Technol. 31, 75003 (2016)

    Google Scholar 

  20. H. Altuntas, C. Ozgit-Akgun, I. Donmez, N. Biyikli, Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films. J. Appl. Phys. 117, 155101 (2015)

    ADS  Google Scholar 

  21. E.H. Nicollian, J.R. Brews, Metal oxide semiconductor (MOS) Physics and Technology (John Wiley & Sons, New York, 1982)

    Google Scholar 

  22. İ Orak, A. Karabulut, E. Yiğit, Ö. Sevgili, A. Ruşen, F. Ozel, The diode and photodiode performances of BaZrO3 perovskite-based device under the influence of thermal and light external stimuli. Sensors Act. A Phys. 337, 113413 (2022)

    Google Scholar 

  23. Ö. Sevgili, F. Özel, A. Ruşen, E. Yiğit, İ Orak, The surface and electrical properties of the Al/Ba2P2O7/p-Si heterojunctions in wide range of temperature and frequency. Surfaces and Interfaces 28, 101637 (2022)

    Google Scholar 

  24. A.Q. Alosabi, A.A. Al-Muntaser, M.M. El-Nahass, A.H. Oraby, Characterization and photovoltaic performance analysis of Na2Pc/p-Si heterojunction solar cell. J. Mater. Sci. Mater. Electron. 33, 25329–25341 (2022)

    Google Scholar 

  25. M.M. Makhlouf, H.M. Zeyada, Effect of annealing temperature and X-ray irradiation on the performance of tetraphenylporphyrin/p-type silicon hybrid solar cell Solid. State. Electron. 105, 51–57 (2015)

    ADS  Google Scholar 

  26. B. Abdallah, S. Al-Khawaja, A. Alkhawwam, I.M. Ismail, Deposition and current conduction of mixed hexagonal and cubic phases of AlN/p-Si films prepared by vacuum arc discharge: effect of deposition temperature. Thin Solid Films 562, 152–158 (2014)

    ADS  Google Scholar 

  27. S.M. Sze, Physics of semiconductor devices (Willey, New York, 1981)

    Google Scholar 

  28. H.C. Card, E.H. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D. Appl. Phys. 4, 1589 (1971)

    ADS  Google Scholar 

  29. J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, Electron transport of inhomogeneous Schottky barriers: A numerical study. J. Appl. Phys. 70, 7403–7424 (1991)

    ADS  Google Scholar 

  30. Ş Altindal, Ö. Sevgili, Y. Azizian-Kalandaragh, The structural and electrical properties of the Au/n-Si (MS) diodes with nanocomposites interlayer (Ag-Doped ZnO/PVP) by using the simple ultrasound-assisted method IEEE Trans. Electron Devices 66, 3103–3109 (2019)

    ADS  Google Scholar 

  31. E. Arslan, Y. Badali, M. Aalizadeh, Ş Altındal, E. Özbay, Current transport properties of (Au/Ni)/HfAlO3/n-Si metal–insulator–semiconductor junction. J. Phys. Chem. Solids 148, 109758 (2021)

    Google Scholar 

  32. A. Kaymaz, E. Evcin Baydilli, H. Uslu Tecimer, Ş Altındal, Y. Azizian-Kalandaragh, Evaluation of gamma-irradiation effects on the electrical properties of Al/(ZnO-PVA)/p-Si type Schottky diodes using current-voltage measurements. Radiat Phys. Chem. 183, 109430 (2021)

    Google Scholar 

  33. S. Demirezen, H.G. Çetinkaya, M. Kara, F. Yakuphanoğlu, Ş Altındal, Synthesis, electrical and photo-sensing characteristics of the Al/(PCBM/NiO: ZnO)/p-Si nanocomposite structures. Sensors Actuators A Phys. 317, 112449 (2021)

    Google Scholar 

  34. H. Durmuş, M. Yıldırım, Ş Altındal, On the possible conduction mechanisms in Rhenium/n-GaAs Schottky barrier diodes fabricated by pulsed laser deposition in temperature range of 60–400 K. J. Mater. Sci. Mater. Electron. 30, 9029–9037 (2019)

    Google Scholar 

  35. S. Chand, J. Kumar, Current transport in Pd2Si/n-Si(100) Schottky barrier diodes at low temperatures. Appl. Phys. A Mater. Sci. Process. 63, 171–178 (1996)

    ADS  Google Scholar 

  36. Ö. Sevgili, On the examination of temperature-dependent possible current-conduction mechanisms of Au/(nanocarbon-PVP)/n-Si Schottky barrier diodes in wide range of voltage. J. Mater. Sci. Mater. Electron. 32, 10112–10122 (2021)

    Google Scholar 

  37. L.S. Chuah, Z. Hassan, H. Abu Hassan, C.W. Chin, S.M. Thahab, S.C. Teoh, Silicon schottky barrier photodiodes with a thin AlN nucleation layer. Microelectron Int. 26, 41–44 (2009)

    Google Scholar 

  38. Z. Azman, N. Nayan, M.M.I. Megat Hasnan, N. Othman, A.S. Bakri, A.S. Abu Bakar, M.H. Mamat, M.Z. Mohd Yusop, Improvement of c-axis (002) AlN crystal plane by temperature assisted HiPIMS technique Microelectron. Int. 38, 86–92 (2021)

    Google Scholar 

  39. M.Z.M. Yusoff, A. Mahyuddin, Z. Hassan, Fabrication of AlN/GaN MSM photodetector with platinum as schottky contacts. Mater Res. Express 6, 115913 (2019)

    ADS  Google Scholar 

  40. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979)

    ADS  Google Scholar 

  41. K.E. Bohlin, Generalized Norde plot including determination of the ideality factor. J. Appl. Phys. 60, 1223–1224 (1986)

    ADS  Google Scholar 

  42. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)

    ADS  Google Scholar 

  43. O. Çiçek, Ş Altındal, Y. Azizian-Kalandaragh, A highly sensitive temperature sensor based on Au/Graphene-PVP/n-Si type schottky diodes and the possible conduction mechanisms in the wide range temperatures. IEEE Sens. J. 20, 14081–14089 (2020)

    ADS  Google Scholar 

  44. O. Sevgili, The investigation of the electrical characteristics and photo-response properties of the Al/(CMAT)/p-Si structures. Solid State Sci. 117, 106635 (2021)

    Google Scholar 

  45. S.A. Dinca, E.A. Schiff, B. Egaas, R. Noufi, D.L. Young, W.N. Shafarman, Hole drift mobility measurements in polycrystalline CuIn 1-xGaxSe2. Phys. Rev. B Condens. Matter Mater. Phys. 80, 235201 (2009)

    ADS  Google Scholar 

  46. M.M. Makhlouf, H. Khallaf, M.M. Shehata, Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application. Appl. Phys. A Mater. Sci. Process. 128, 1–13 (2022)

    Google Scholar 

  47. A. Bengi, H. Uslu, T. Asar, Ş Altındal, S.Ş Çetin, T.S. Mammadov, S. Özçelik, Temperature dependent admittance spectroscopy of GaAs/AlGaAs single-quantum-well laser diodes (SQWLDs). J. Alloys Compd. 509, 2897–2902 (2011)

    Google Scholar 

  48. J. Li, H. Wang, M. Luo, J. Tang, C. Chen, W. Liu, F. Liu, Y. Sun, J. Han, Y. Zhang, 10% Efficiency Cu2ZnSn(S, Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width Sol. Energy Mater. Sol. Cells 149, 242–249 (2016)

    Google Scholar 

  49. H.G. Çetinkaya, H. Tecimer, H. Uslu, Ş Altindal, Photovoltaic characteristics of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) at various temperatures Curr. Appl. Phys. 13, 1150–1156 (2013)

    ADS  Google Scholar 

  50. E. Yükseltürk, O. Surucu, M. Terlemezoglu, M. Parlak, Ş Altındal, Illumination and voltage effects on the forward and reverse bias current–voltage (I-V) characteristics in In/In2S3/p-Si photodiodes. J. Mater. Sci. Mater. Electron. 32, 21825–21836 (2021)

    Google Scholar 

  51. Ç. Bilkan, Y. Azizian-Kalandaragh, Ş Altındal, R. Shokrani-Havigh, Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures. Phys B Condens. Matter 500, 154–160 (2016)

    ADS  Google Scholar 

  52. M. Ulusoy, Ş Altındal, P. Durmuş, S. Özçelik, Y. Azizian-Kalandaragh, Frequency and voltage-dependent electrical parameters, interface traps, and series resistance profile of Au/(NiS:PVP)/n-Si structures. J. Mater. Sci. Mater. Electron. 32, 13693–13707 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was produced from project (Number: BAP-SHMYO.2021.002) supported by The Scientific Research Projects Coordination Unit of Bingol University.

Funding

Bingöl Üniversitesi, BAP-SHMYO.2021.002, İkram Orak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Sevgili.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yiğit, E., Sevgili, Ö. & Orak, İ. Electrical properties of Al/p-Si diode with AlN interface layer under temperature and illumination stimuli for sensing applications. Appl. Phys. A 129, 194 (2023). https://doi.org/10.1007/s00339-023-06432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06432-4

Keywords

Navigation