Skip to main content

Advertisement

Log in

Strong reactivity and electronic sensitivity of Au-decorated BC3 nanotubes toward the phenylpropanolamine drug

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We explored the possible utilization of a pure BC3 nanotube and its Au-decorated form (Au@BCNT) for the detection of phenylpropanolamine (PHA) drug. All calculations were performed through TPSS functional using LANL2DZ basis set on the Au atom. For the remaining atoms, we used 6–311++G** basis set. PHA had a weak interaction with the pure BCNT and the binding energy (BE) was − 0.36 eV. PHA did not change the HOMO–LUMO gap and electrical resistivity of the pristine BCNT, and the sensing response is 9.7 at 298 K. PHA interacted via its hexagon with the Au atom and the BE was − 1.49 eV after the Au-decoration on BCNT. Subsequently, the sensing response dramatically improved to 524.6, which is attributed to a great charge transfer. The calculated recovery time was 1.03 s for the PHA desorption from the Au@BCNT surface, which was short. Hence, we can consider Au@BCNT a viable sensor to detect PHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data will be available if required.

Code availability

Not applicable.

References

  1. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11, 2549–2554 (2003)

    ADS  Google Scholar 

  2. M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, X. Xu, Detection and identification of illicit drugs using terahertz imaging. J. Appl. Phys. 100, 103104–103109 (2006)

    ADS  Google Scholar 

  3. A.H. Grange, G.W. Sovocool, Detection of illicit drugs on surfaces using direct analysis in real time (DART) time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 25, 1271–1281 (2011)

    ADS  Google Scholar 

  4. C.R. Lake, S. Gallant, E. Masson, P. Miller, Adverse drug effects attributed to phenylpropanolamine: a review of 142 case reports. Am. J. Med. 89, 195–208 (1990)

    Google Scholar 

  5. S. Mengali, D. Luciani, R. Viola, N. Liberatore, S. Zampolli, I. Elmi, G. Cardinali, A. Poggi, E. Dalcanale, E. Biavardi, Toward street detection of ampphetamines. SPIE Newsroom 10, 004682–004684 (2013)

    Google Scholar 

  6. X. Wang, C. Li, Y. Zhang, H.M. Ali, S. Sharma, R. Li, M. Yang, Z. Said, X. Liu, Tribology of enhanced turning using biolubricants: a comparative assessment. Tribol. Int. (2022). https://doi.org/10.1016/j.triboint.2022.107766

    Article  Google Scholar 

  7. A. Kaddoumi, T. Mori, M.N. Nakashima, M. Wada, K. Nakashima, High performance liquid chromatography with fluorescence detection for the determination of phenylpropanolamine in human plasma and rat’s blood and brain microdialysates using DIB-Cl as a label. J. Pharm. Biomed. Anal. 34, 643–650 (2004)

    Google Scholar 

  8. P. Viñas, C. López-Erroz, F. Cerdán, M. Hernández-Córdoba, Determination of phenylpropanolamine and methoxamine using flow-injection with fluorimetric detection. Talanta 47, 455–462 (1998)

    Google Scholar 

  9. J. Beheshtian, A.A. Peyghan, Z. Bagheri, Functionalization of BN nanosheet with N 2 H 4 may be feasible in the presence of Stone-Wales defect. Struct. Chem. 24, 1565–1570 (2013)

    Google Scholar 

  10. K. Xu, Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems. J. Micromech. Microeng. 31, 054001 (2021)

    ADS  MathSciNet  Google Scholar 

  11. C.F. Schaber, A.E. Filippov, T. Heinlein, J.J. Schneider, S.N. Gorb, Modelling clustering of vertically aligned carbon nanotube arrays. Interface Focus 5, 20150026 (2015)

    Google Scholar 

  12. M.T. Baei, A.A. Peyghan, Z. Bagheri, Carbon nanocone as an ammonia sensor: DFT studies. Struct. Chem. 24, 1099–1103 (2013)

    Google Scholar 

  13. K. Wu, H. Zhang, Y. Chen, Q. Luo, K. Xu, All-silicon microdisplay using efficient hot-carrier electroluminescence in standard 0.18μm CMOS technology. IEEE Electron Dev. Lett. 42, 541–544 (2021)

    ADS  Google Scholar 

  14. A. Ahmadi Peyghan, M. Pashangpour, Z. Bagheri, M. Kamfiroozi, Energetic, structural, and electronic properties of hydrogenated Al12 P12 nanocluster. Phys. E 44, 1436–1440 (2012)

    Google Scholar 

  15. C. Aranthady, T. Jangid, K. Gupta, A.K. Mishra, S.D. Kaushik, V. Siruguri, G.M. Rao, G.V. Shanbhag, N.G. Sundaram, Selective SO2 detection at low concentration by Ca substituted LaFeO3 chemiresistive gas sensor: a comparative study of LaFeO3 pellet vs thin film. Sens. Actuators B Chem. 329, 129211 (2021)

    Google Scholar 

  16. J. Beheshtian, M.T. Baei, Z. Bagheri, A.A. Peyghan, Carbon nitride nanotube as a sensor for alkali and alkaline earth cations. Appl. Surf. Sci. 264, 699–706 (2013)

    ADS  Google Scholar 

  17. Y. Wang, C. Li, Y. Zhang, M. Yang, B. Li, L. Dong, J. Wang, Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. Int. J. Precis. Eng. Manuf. Green Technol. 5(2), 327–339 (2018). https://doi.org/10.1007/s40684-018-0035-4

    Article  Google Scholar 

  18. X. Zhang, Y. Tang, F. Zhang, C. Lee, A Novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016). https://doi.org/10.1002/aenm.201502588

    Article  Google Scholar 

  19. J. Zhang, C. Li, Y. Zhang, M. Yang, D. Jia, G. Liu, Y. Hou, R. Li, N. Zhang, Q. Wu, H. Cao, Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J. Clean. Prod. 193, 236–248 (2018). https://doi.org/10.1016/j.jclepro.2018.05.009

    Article  Google Scholar 

  20. Z. Said, S. Arora, S. Farooq, L.S. Sundar, C. Li, A. Allouhi, Recent advances on improved optical, thermal, and radiative characteristics of plasmonic nanofluids: academic insights and perspectives. Solar Energy Mater. Solar Cells 236, 111504 (2022). https://doi.org/10.1016/j.solmat.2021.111504

    Article  Google Scholar 

  21. X. Cui, C. Li, Y. Zhang, Z. Said, S. Debnath, S. Sharma, H.M. Ali, M. Yang, T. Gao, R. Li, Grindability of titanium alloy using cryogenic nanolubricant minimum quantity lubrication. J. Manuf. Process. 80, 273–286 (2022). https://doi.org/10.1016/j.jmapro.2022.06.003

    Article  Google Scholar 

  22. T. Gao et al., Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Front. Mech. Eng. 17(2), 24 (2022). https://doi.org/10.1007/s11465-022-0680-8

    Article  Google Scholar 

  23. L. Tang, Y. Zhang, C. Li, Z. Zhou, X. Nie, Y. Chen, H. Cao, B. Liu, N. Zhang, Z. Said, S. Debnath, M. Jamil, H.M. Ali, S. Sharma, Biological stability of water-based cutting fluids: progress and application. Chin. J. Mech. Eng. 35(1), 1–24 (2022). https://doi.org/10.1186/s10033-021-00667-z

    Article  Google Scholar 

  24. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10(6), 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4

    Article  Google Scholar 

  25. M. Xi, X. Fu, H. Yang, C. He, L. Fu, X. Cheng, J. Guo, Predicted a honeycomb metallic BiC and a direct semiconducting Bi2C monolayer as excellent CO2 adsorbents. Chin. Chem. Lett. (2021). https://doi.org/10.1016/j.cclet.2021.12.041

    Article  Google Scholar 

  26. S. Mu, Q. Liu, P. Kidkhunthod, X. Zhou, W. Wang, Y. Tang, Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. (2020). https://doi.org/10.1093/nsr/nwaa178

    Article  Google Scholar 

  27. X. Feng, L. Xia, Z. Jiang, M. Tian, S. Zhang, C. He, Dramatically promoted toluene destruction over Mn@Na-Al2O3@Al monolithic catalysts by Ce incorporation: oxygen vacancy construction and reaction mechanism. Fuel 326, 125051 (2022). https://doi.org/10.1016/j.fuel.2022.125051

    Article  Google Scholar 

  28. X. Li, Y. Song, C. Zhang, C. Zhao, C. He, Inverse CO2/C2H2 separation in a pillared-layer framework featuring a chlorine-modified channel by quadrupole-moment sieving. Sep. Purif. Technol. 279, 119608 (2021). https://doi.org/10.1016/j.seppur.2021.119608

    Article  Google Scholar 

  29. Y. Wei, C. Chen, C. Tan, L. He, Z. Ren, C. Zhang, J. Wang, High-performance visible to near-infrared broadband Bi2O2Se nanoribbon photodetectors. Adv. Opt. Mater. (2022). https://doi.org/10.1002/adom.202201396

    Article  Google Scholar 

  30. V. Schroeder, S. Savagatrup, M. He, S. Lin, T.M. Swager, Carbon nanotube chemical sensors. Chem. Rev. 119(1), 599–663 (2018)

    Google Scholar 

  31. M. Yang, C. Li, Y. Zhang, Y. Wang, B. Li, D. Jia, Y. Hou, R. Li, Research on microscale skull grinding temperature field under different cooling conditions. Appl. Therm. Eng. 126, 525–537 (2017). https://doi.org/10.1016/j.applthermaleng.2017.07.183

    Article  Google Scholar 

  32. M. Shi, H. Zhu, C. Chen, J. Jiang, L. Zhao, C. Yan, Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries. Int. J. Miner. Metall. Mater. 30, 25–32 (2023). https://doi.org/10.1007/s12613-022-2441-4

    Article  Google Scholar 

  33. D. Chen, X. Zhang, J. Tang, J. Fang, Y. Li, H. Liu, Adsorption and dissociation mechanism of SO2 and H2S on Pt decorated graphene: a DFT-D3 study. Appl. Phys. A 124, 404 (2018)

    ADS  Google Scholar 

  34. Z. Zhang, F. Yang, H. Zhang, T. Zhang, H. Wang, Y. Xu, Q. Ma, Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating. Mater. Char. (2021). https://doi.org/10.1016/j.matchar.2020.110732

    Article  Google Scholar 

  35. L. Li, D. Zhang, J. Deng, Y. Gou, J. Fang, H. Cui, M. Cao, Carbon-based materials for fast charging lithium-ion batteries. Carbon 183, 721–734 (2021). https://doi.org/10.1016/j.carbon.2021.07.053

    Article  Google Scholar 

  36. H. Song, J. Gao, L. Wu, Fluorouracil drug sensing characteristics of pristine and Al-doped BC3 nanosheets: quantum chemical study. Comput. Theor. Chem. 1182, 112847 (2020)

    Google Scholar 

  37. C. Wang, L. Sheng, M. Jiang, X. Lin, Q. Wang, M. Guo, L. Jiang, Flexible SnSe2/N-doped porous carbon-fiber film as anode for high-energy-density and stable sodium-ion batteries. J. Power Sour. 555, 232405 (2023). https://doi.org/10.1016/j.jpowsour.2022.232405

    Article  Google Scholar 

  38. S.Y. Kim, J. Park, H.C. Choi, J.P. Ahn, J.Q. Hou, H.S. Kang, X-ray photoelectron spectroscopy and first principles calculation of BCN nanotubes. J. Am. Chem. Soc. 129, 1705–1716 (2007)

    Google Scholar 

  39. F. Zheng, H. Dong, Y. Ji, Y. Li, Computational study on catalytic performance of BC3 and NC3 nanosheets as cathode electrocatalysts for nonaqueous Li–O2 batteries. J. Power Sources 436, 226845 (2019)

    Google Scholar 

  40. J. Wang, L. Ma, Theoretical study of hydrogen storage on Ti-decorated BC3 nanostructures. J. Nanosci. Nanotechnol. 19, 5650–5655 (2019)

    Google Scholar 

  41. M. Yang, C. Li, Y. Zhang, D. Jia, X. Zhang, Y. Hou, R. Li, J. Wang, Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int. J. Mach. Tools Manuf. 122, 55–65 (2017). https://doi.org/10.1016/j.ijmachtools.2017.06.003

    Article  Google Scholar 

  42. Y. Li, T. Hussain, A. De Sarkar, R. Ahuja, Hydrogen storage in polylithiated BC3 monolayer sheet. Solid State Commun. 170, 39–43 (2013)

    ADS  Google Scholar 

  43. M. Yin, Y. Zhu, G. Yin, G. Fu, L. Xie, Deep feature interaction network for point cloud registration, with applications to optical measurement of blade profiles. IEEE Trans. Ind. Inform. (2022). https://doi.org/10.1109/TII.2022.3220889

    Article  Google Scholar 

  44. A.A. Peyghan, S. Yourdkhani, M. Noei, Working mechanism of a BC3 nanotube carbon monoxide gas sensor. Commun. Theor. Phys. 60, 113 (2013)

    ADS  Google Scholar 

  45. A.K. Mishra, S. Mishra, Tuning of adsorption energies of CO2 and CH4 in borocarbonitrides BxCyNz: a first-principles study. J. Mol. Graph. Model. 93, 107446 (2019)

    Google Scholar 

  46. J. Beheshtian, A.A. Peyghan, M. Noei, Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sens. Actuators B Chem. 181, 829–834 (2013)

    Google Scholar 

  47. M. Moradi, M. Noei, A.A. Peyghan, DFT studies of Si-and Al-doping effects on the acetone sensing properties of BC3 graphene. Mol. Phys. 111, 3320–3326 (2013)

    ADS  Google Scholar 

  48. T. Gao et al., Carbon fiber reinforced polymer in drilling: from damage mechanisms to suppression. Compos. Struct. 286, 115232 (2022). https://doi.org/10.1016/j.compstruct.2022.115232

    Article  Google Scholar 

  49. N. Hellgren, T. Berlind, G.K. Gueorguiev, M.P. Johansson, S. Stafström, L. Hultman, Fullerene-like BCN thin films: a computational and experimental study. Mater. Sci. Eng. B 113, 242–247 (2004)

    Google Scholar 

  50. R.R.Q. Freitas, F. de Brito Mota, R. Rivelino, C.M.C. de Castilho, A. Kakanakova-Georgieva, G.K. Gueorguiev, Spin-orbit-induced gap modification in buckled honeycomb XBi and XBi3 (X = B, Al, Ga, and In) sheets. J. Phys. Condens. Matter. 27, 485306 (2015)

    Google Scholar 

  51. A. Georgieva et al., Phenomena ruling deposition and intercalation of AlN at the graphene/SiC interface. Nanoscale 12, 19470–19476 (2020)

    Google Scholar 

  52. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system. J. Comp. Chem. 14, 1347–1363 (1993)

    Google Scholar 

  53. N. O’Boyle, A. Tenderholt, K. Langner, cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)

    Google Scholar 

  54. Y. Yang, M.N. Weaver, K.M. Merz, Assessment of the “6-31+G** + LANL2DZ” mixed basis set coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. J. Phys. Chem. A 113, 9843–9851 (2009)

    Google Scholar 

  55. S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004)

    Google Scholar 

  56. S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    ADS  Google Scholar 

  57. T. Kupka, M. Stachów, M. Nieradka, L. Stobiński, DFT calculation of structures and NMR chemical shifts of simple models of small diameter zigzag single wall carbon nanotubes (SWCNTs). Magn. Reson. Chem. 49, 549–557 (2011)

    Google Scholar 

  58. N. Illyaskutty, H. Kohler, T. Trautmann, M. Schwotzer, V.M. Pillai, Enhanced ethanol sensing response from nanostructured MoO3: ZnO thin films and their mechanism of sensing. J. Mater. Chem. C 1, 3976–3984 (2013)

    Google Scholar 

  59. L. Xie, Y. Zhu, M. Yin, Z. Wang, D. Ou, H. Zheng, G. Yin, Self-feature-based point cloud registration method with a novel convolutional Siamese point net for optical measurement of blade profile. Mech. Syst. Signal Process. 178, 109243 (2022). https://doi.org/10.1016/j.ymssp.2022.109243

    Article  Google Scholar 

  60. R. Kumar, N. Goel, M. Kumar, UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2, 1744–1752 (2017)

    Google Scholar 

  61. A. Bano, J. Krishna, D.K. Pandey, N. Gaur, An ab initio study of sensing applications of MoB 2 monolayer: a potential gas sensor. Phys. Chem. Chem. Phys. 21, 4633–4640 (2019)

    Google Scholar 

  62. F. Behmagham, E. Vessally, B. Massoumi, A. Hosseinian, L. Edjlali, A computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets. Superlatt. Microstruct. 100, 350–357 (2016)

    ADS  Google Scholar 

  63. R. Bagheri, M. Babazadeh, E. Vessally, M. Es’haghi, A. Bekhradnia, Si-doped phagraphene as a drug carrier for adrucil anti-cancer drug: DFT studies. Inorg. Chem. Commun. 90, 8–14 (2018)

    Google Scholar 

  64. C. Xiao, K. Ma, G. Cai, X. Zhang, E. Vessally, Borophene as an electronic sensor for metronidazole drug: a computational study. J. Mol. Graph. Model. 96, 107539 (2020)

    Google Scholar 

  65. A. Hosseinian, M. Salary, S. Arshadi, E. Vessally, L. Edjlali, The interaction of phosgene gas with different BN nanocones: DFT studies. Solid State Commun. 269, 23–27 (2018)

    ADS  Google Scholar 

  66. D. Jia et al., Lubrication-enhanced mechanisms of titanium alloy grinding using lecithin biolubricant. Tribol. Int. 169, 107461 (2022). https://doi.org/10.1016/j.triboint.2022.107461

    Article  Google Scholar 

  67. M. Cossi, V. Barone, R. Cammi, J. Tomasi, Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 255, 327–335 (1996)

    ADS  Google Scholar 

  68. B. Li, C. Li, Y. Zhang, Y. Wang, D. Jia, M. Yang, Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin. J. Aeronaut. 29(4), 1084–1095 (2016)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Mustafa M. Kadhim.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethics approval

We approved all Ethics.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhim, M.M., Abdullaha, S.A., Taban, T.Z. et al. Strong reactivity and electronic sensitivity of Au-decorated BC3 nanotubes toward the phenylpropanolamine drug. Appl. Phys. A 129, 232 (2023). https://doi.org/10.1007/s00339-023-06431-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06431-5

Keywords

Navigation