Skip to main content
Log in

Undoped p-type ZnTe thin film and thin film transistor channel performance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the p-type Zinc Telluride (ZnTe) thin films were deposited by RF magnetron sputtering technique on the patterned-ITO substrates. The RF-sputtered p-type ZnTe thin films having 201, 308, 362 and 457 nm thicknesses have been characterized before device fabrication. The SEM and XRD analysis showed that increasing film thickness has caused cluster-like growth and presence of ZnO grains, respectively. In addition, the EDS analysis has been used to determine the composition of Zn and Te. The EDS spectra showed that the ZnO grains may contribute to n-type conductivity as well as to p-type conductivity due to the oxygen-rich (ZnO:O) or tellurium-doped (ZnO:Te) structures. The thickness depends root mean sequence (RMS) values of the ZnTe films are 4.60 nm, 14.36 nm, 20.10 nm, and 27.95 nm, respectively. On the other hand, the threshold voltage (\({V}_{th})\), subthreshold current (\({I}_{off}\)), subthreshold slope (SS) and field effect mobility (\(\mu\)) of the p-type ZnTe thin film transistors (TFTs) have investigated depending on channel layer thickness. The increasing film thickness has caused decreasing performance parameters from 9.75 V, 6.20 × 10–10 A, 1.15 V/dec and 3,30 cm2V−1 s−1 to 2.50 V, 3.60 × 10–10 A, 0.72 V/dec and 1,68 cm2V−1 s−1, respectively. The film having 100 nm thickness has best saturation-current value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. D.S. Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Solid State Sci. 107, 106346 (2020)

    Google Scholar 

  2. D. Manica, V.A. Antohe, A. Moldovan, R. Pascu, S. Iftimie, L. Ion, M.P. Suchea, S. Antohe, Nanomaterials 11, 2286 (2021)

    Google Scholar 

  3. S. Shanmugan, D. Mutharasu, ISSN Mater. Sci. 18, 1392 (2012)

    Google Scholar 

  4. C.A. Wolden, A. Abbas, J. Li, D.R. Diercks, D.M. Meysing, T.R. Ohno, J.D. Beach, T.M. Barnes, J.M. Walls, Sol. Energy Mater. Sol. Cells. 147, 203 (2016)

    Google Scholar 

  5. D. Suthar, S.L. Himanshu, S. Patel, M.D.K. Chander, M.S. Dhaka, Solid State Sci. (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106346

    Article  Google Scholar 

  6. X. Ju, D. Chen, X. Chen, T. Gao, Y. Chen, J. Wang, X. Wang, Opt. Mater. 91, 235 (2019)

    ADS  Google Scholar 

  7. M.C. Tamargo, II-VI Semiconductor Materials and Their Applications (CRC Press, 2002)

    Google Scholar 

  8. M.J. Kim, K.J. Lee, H.D. Kim, H.J. Kim, B.K. Choi, I.H. Lee, Y.G. Khim, J.E. Heo, S.H. Chang, E. Choi, Y.J. Chang, Mater. Lett. 313, 131725 (2022)

    Google Scholar 

  9. Y.L. Cao, Z.T. Liu, L.M. Chen, Y.B. Tang, L.B. Luo, J.S. Jie, W.J. Zhang, S.T. Lee, C.S. Lee, Opt. Exp. 19, 6100 (2011)

    Google Scholar 

  10. X. Zhang, D. Wu, H. Geng, Crystals 7(10), 307 (2017)

    Google Scholar 

  11. O.I. Olusola, M.L. Madugu, N.A.A. Manaf, I.M. Dharmadas, Curr. Appl. Phys. 16, 120 (2016)

    ADS  Google Scholar 

  12. F. Pfisterer, H.W. Schock, J. Cryst. Growth 59, 432 (1982)

    ADS  Google Scholar 

  13. A. Sweyllam, K. Alfaramawi, S. Abboudy, N.G. Imam, H.A. Motaweh, Thin Solid Films 519, 681 (2010)

    ADS  Google Scholar 

  14. S. Dehimi, L. Dehimi, T. Asar, B. Mebarki, S. Özçelik, Optik 135, 153 (2017)

    ADS  Google Scholar 

  15. C.A. Wolden, A. Abbas, J. Li, D.R. Diercks, D.M. Meysing, T.R. Ohno, J.D. Beach, T.M. Barnes, J.M. Walls, Sol. Energy Mater. Sol. Cells 147, 203 (2016)

    Google Scholar 

  16. F.J. Ochoa-Estrella, A. Vera-Marquina, I. Mejia et al., J Mater Sci. 29, 20623–20628 (2018)

    Google Scholar 

  17. I.A. Younus, M.A. Ezzat, M.M. Uonis, Nanocomposites 6, 165 (2020)

    Google Scholar 

  18. J.S. Lin, S.S. Wei, Y.T. Yu, C.H. Hsu, W.H. Kao, W.S. Chen, C.F. Tseng, C.H. Lai, J.M. Lu, S.P. Ju, Adv Mat Res 690–693, 569 (2013)

    Google Scholar 

  19. M. Isika, H.H. Gullu, M. Parlak, N.M. Gasanly, Physica B 582, 411968 (2020)

    Google Scholar 

  20. O. Skhouni, A. El Manouni, M. Mollar, R. Schrebler, B. Marí, Thin Solid Films 564, 195 (2014)

    ADS  Google Scholar 

  21. Q. Hu, X. Zhu, C. Qin, W. Li, C. Liu, Vacuum 179, 109464 (2020)

    ADS  Google Scholar 

  22. H. Ohara, T. Sasaki, K. Noda, S. Ito, M. Sasaki, Y. Endo, S. Yoshitomi, J. Sakata, T. Serikawa, S. Yamazaki, J J Appl Phys. 49, 03CD02 (2010)

    Google Scholar 

  23. L. Zhang, H. Yu, W. Xiao, C. Liu, J. Chen, M. Guo, H. Gao, B. Liu, W. Wu, Electronics 11, 1–31 (2022)

    Google Scholar 

  24. P.T. Liu, D.B. Ruan, X.Y. Yeh, Y.C. Chiu, G.T. Zheng, S.M. Sze, Sci. Rep. 8(8153), 1–9 (2018)

    Google Scholar 

  25. A. Suresh, P. Wellenius, V. Baliga, H. Luo, L.M. Lunardi, J.F. Muth, IEEE Electron Device Lett. 31, 1499 (2010)

    Google Scholar 

  26. C.W. Shih, A. Chin, Sci. Rep. 7(1147), 1–8 (2017)

    ADS  Google Scholar 

  27. M. Suchea, N. Kornilios, E. Koudoumas, Physica B 405, 4389 (2010)

    ADS  Google Scholar 

  28. A.M. Smith, R.P. Gowers, A. Shih, I.A. Akinwande, IEEE Trans Electron Devices 62, 4213 (2015)

    ADS  Google Scholar 

  29. A.H. Chen, H.T. Cao, H.Z. Zhang, L.Y. Liang, Z.M. Liu, Z. Yu, Q. Wan, Microelectron. Eng. 87, 2019 (2010)

    Google Scholar 

  30. J. Wu, D.D. Han, Y.Y. Cong, N.N. Zhao, Z.F. Chen, J.C. Dong, F.L. Zhao, S.D. Zhang, L.F. Liu, X. Zhang, Y. Wang, Electron. Lett 51, 867 (2015)

    ADS  Google Scholar 

  31. C. Avis, H.R. Hwang, J. Jang, A.C.S. Appl, Mater. Interfaces 6, 10941 (2014)

    Google Scholar 

  32. G. Lastra, A. Olivas, J.I. Mejía, M.A. Quevedo-López, Solid-State Electron. 116, 56–59 (2016)

    ADS  Google Scholar 

  33. Di. Wu, Y. Jiang, Y. Zhang, J. Li, Y. Yu, Y. Zhang, Z. Zhu, Li. Wang, C. Wu, L. Luo, Jie, Jiansheng. J. Mater. Chem. 22, 6206–6212 (2012)

    Google Scholar 

  34. S.Y. Li, Y. Jiang, D. Wu, L. Wang, H.H. Zhong, B. Wu, X.Z. Lan, Y.Q. Yu, Z.B. Wang, J.S. Jie, J. Phys. Chem. C 114, 7980 (2010)

    Google Scholar 

  35. H.B. Huo, L. Dai, C. Liu, L.P. You, W.Q. Yang, R.M. Ma, G.Z. Ran, G.G. Qin, Nanotechnology 17, 5912 (2006)

    ADS  Google Scholar 

  36. M.I. Hossain, K.A.M.H. Siddiquee, O. Islam, M.A. Gafur, M.R. Qadir, N.A. Ahmed, J Opt 48(3), 295–301 (2019)

    Google Scholar 

  37. H. Singh, M. Singh, J. Singh, B.S. Bansod, T. Singh, A. Thakur, M.F. Wani, J. Sharma, J. Mater. Sci. Mater. Electron. 30, 3504 (2019)

    Google Scholar 

  38. J. Zhao, Y. Zeng, C. Liu, Y. Li, J. Cryst. Growth 312, 1491 (2010)

    ADS  Google Scholar 

  39. W. Mahmood, S.U. Awan, A.U. Din, J. Ali, M.F. Nasir, N. Ali, A.U. Haq, M. Kamran, B. Parveen, M. Rafiq, N.A. Shah, Materials 12, 1359 (2019)

    ADS  Google Scholar 

  40. O.I. Olusola, M.L. Madugu, N.A.A. Manaf, I.M. Dharmadasa, Curr. Appl. Phys. 16, 120 (2016)

    ADS  Google Scholar 

  41. F. Fauzi, D.G. Diso, O.K. Echendu, V. Patel, Y. Purandare, R. Burton, I.M. Dharmadasa, Semicond. Sci. Technol. 28, 045005 (2013)

    ADS  Google Scholar 

  42. W. Promnopas, T. Thongtem, S. Thongtem, J. Nanomater. 2014, 529629 (2014)

    Google Scholar 

  43. H.M.H. Al-Kordy, S.A. Sabry, M.E.M. Mabrouk, Sci. Rep. 11, 10924 (2021)

    ADS  Google Scholar 

  44. U. Holzwarth, N. Gibson, Nature Nanotech 6, 534 (2011)

    ADS  Google Scholar 

  45. T. Mahalingam, V. Dhanasekaran, K. Sundaram, A. Kathalingam, J.-K. Rhee, Ionics 18, 299–306 (2012)

    Google Scholar 

  46. F.K. Nejad, M. Teimouri, S.J. Marandi, M. Shariati, J. Cryst. Growth 522, 214 (2019)

    ADS  Google Scholar 

  47. A. Singh, B.P. Nenavathu, I.M. Mohsin, Chem. Pap. 75, 4317 (2021)

    Google Scholar 

  48. N. Shanmugam, S. Suthakaran, N. Kannadasan, K. Sathishkumar, J O Heterocyclics 105, 15 (2015)

    Google Scholar 

  49. Z. Yao, K. Tang, Z. Xu, J. Ma, S. Gu, Opt. Mater. Exp. 9, 652 (2019)

    ADS  Google Scholar 

  50. A.E. Kasapoğlu, S. Habashyani, A. Baltakesmez, D. İskenderoğlu, E. Gür, Int. J. Hydrogen Energy. (2021). https://doi.org/10.1016/j.ijhydene.2021.03.229

    Article  Google Scholar 

  51. F.A. Akgül, G. Akgül, N. Yildirim, H.E. Ünalan, R. Turan, Mater. Chem. Phys. 147, 987 (2014)

    Google Scholar 

  52. F.A. Akgül, G. Akgül, H.H. Güllü, H.E. Unalan, R. Turan, Philos. Mag. 95, 1164 (2015)

    ADS  Google Scholar 

  53. H.H. Güllü, O.B. Surucu, M. Işık, M. Terlemezoğlu, M. Parlak, J. Mater. Sci. Mater. Electron. 31, 11390 (2020)

    Google Scholar 

  54. Y. Song, S. Zhang, C. Zhang, Y. Yang, K. Lv, Crystals 9(8), 395 (2019)

    Google Scholar 

  55. K. Seshadri, C.D. Frisbie, Appl. Phys. Lett. 78, 993 (2001)

    ADS  Google Scholar 

  56. C.R. Kağan, P. Andry, Thin-Film Transistors Dekker (CRC Press, New York, 2003)

    Google Scholar 

  57. P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, E. Fortunato, J. Non-Cryst, Solids 352, 1749 (2006)

    Google Scholar 

  58. M. Labed, N. Sengouga, K.H. Kim, Y.S. Rim, Phys. Status Solidi A 216, 1800987 (2019)

    ADS  Google Scholar 

  59. S.Y. Lee, D.H. Kim, E. Chong, Y.W. Jeon, D.H. Kim, Appl. Phys. Lett. 98, 122105 (2011)

    ADS  Google Scholar 

  60. A. Venugopal, L. Colombo, E.M. Vogel, Appl. Phys. Lett. 96, 013512 (2010)

    ADS  Google Scholar 

  61. X.G. Yu, J.S. Yu, J.L. Zhou, H. Wang, L.H. Cheng, Y.D. Jiang, Jpn. J. Appl. Phys. 50, 104101 (2011)

    ADS  Google Scholar 

  62. M. Kano, T. Minari, K. Tsukagoshi, H. Maeda, Appl. Phys. Lett. 98, 073307 (2011)

    ADS  Google Scholar 

  63. J.H. Jeong, H.W. Yang, J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, J. Song, C.S. Hwang, Electrochem. Solid-State Lett. 11, 157 (2008)

    Google Scholar 

  64. Z.W. Shang, H.H. Hsu, Z.W. Zheng, C.H. Cheng, Nanotechnol. Rev. 8, 422–443 (2019)

    Google Scholar 

  65. S. Lee, H. Park, D.C. Paine, J. Appl. Phys. 109, 063702 (2011)

    ADS  Google Scholar 

  66. M. Kano, T. Minari, K. Tsukagoshi, Appl. Phys. Lett. 94, 143304 (2009)

    ADS  Google Scholar 

  67. C.A.P. Flores, I. Mejía, M.A.Q. López, C.A. Beltran, L.M. Reséndiz, Superficies y Vacio 30(3), 46 (2017)

    Google Scholar 

  68. Z.T. Zhu, J.T. Mason, R. Dieckmann, G.G. Malliaras, Appl. Phys. Lett. 81, 24 (2002)

    Google Scholar 

  69. C.A. Pons-Flores, I. Mejía, M.A. Quevedo-López, C. Alvarado-Beltran, L.M. Reséndiz, Superfic. Y. Vacío 30(3), 46–50 (2017)

    Google Scholar 

  70. B. Bräuer, R. Kukreja, A. Virkar, H.B. Akkerman, A. Fognini, T. Tyliszczac, Z. Bao, Organic Electron 12, 1936 (2011)

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Scientific and Technological Research Council of Turkey (TUBITAK) ARDEB 1001 (The Scientific and Technological Research Projects Funding Program) Grant No 119F032.

Author information

Authors and Affiliations

Authors

Contributions

AB: data curation, conceptualization, methodology, investigation, writing—review and editing, original draft preparation BG: conceptualization, methodology, investigation, visualization, writing—review and editing.

Corresponding author

Correspondence to Betül Güzeldir.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltakesmez, A., Güzeldir, B. Undoped p-type ZnTe thin film and thin film transistor channel performance. Appl. Phys. A 129, 134 (2023). https://doi.org/10.1007/s00339-023-06430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06430-6

Keywords

Navigation