Skip to main content
Log in

Effect of the top electrode on local piezoelectric and the ferroelectric response of PVDF thin films in PVDF/Au/Si and Ag/PVDF/Au/Si multilayers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of the top Ag electrode on local piezoelectric and the ferroelectric response of PVDF thin films in PVDF/Au/Si and Ag/PVDF/Au/Si multilayers is probed using dual AC resonance tracking piezo force microscopy (DART-PFM). The 4 wt% PVDF thin films are prepared on Au/Si using a spin coater and the top electrode Ag is deposited with the DC magnetron sputtering method. The structural and microstructural characteristics are analyzed using a Raman spectrometer, grazing incidence X-ray diffraction, scanning electron microscopy with electron dispersive spectroscopy, and atomic force microscopy. The local piezoelectric and ferroelectric characteristics are found to be dependent upon the presence or absence of the top Ag electrode. Both the device structures display typical bi-stable ferroelectric and piezoelectric switching. The resultant non-uniform electric field due to the absence of a top electrode shows ferroelectric switching at an applied voltages ≥  ± 20 V compared to the low-voltage (down to ± 5 V) switching on Ag/PVDF/Au junctions. Furthermore, a higher d33 coefficient recorded in Ag/PVDF/Au is discussed with uniform electric field distribution in the devices. Our study reveals a clear dependency of local piezoelectric and ferroelectric characteristics upon the top electrode and its local domain switching phenomena.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

Data will be made available on reasonable request.

References

  1. H. Sun, J. Wang, Y. Wang, C. Guo, J. Gu, W. Mao, J. Yang, Y. Liu, T. Zhang, T. Gao, H. Fu, T. Zhang, Y. Hao, Z. Gu, P. Wang, H. Huang, Y. Nie, Nat Commun. 13(1), 4332 (2022)

    ADS  Google Scholar 

  2. Bo. Li, M. Yuan, S. Zhang, R. Rajagopalan, M.T. Lanaga, Appl. Phys. Lett. 113, 193903 (2018)

    ADS  Google Scholar 

  3. A. Laudari, A.R. Mazza, A. Daykin, S. Khanra, K. Ghosh, F. Cummings, T. Muller, P.F. Miceli, S. Guha, Phys. Rev. Appl. 10, 014011 (2018)

    ADS  Google Scholar 

  4. S. Badatya, D.K. Bharti, N. Sathish, A.K. Srivastava, M.K. Gupta, ACS Appl. Mater. Interfaces 13(23), 27245–27254 (2021)

    Google Scholar 

  5. J.Y. Jo, H.S. Han, J.-G. Yoon, T.K. Song, S.-H. Kim, T.W. Noh, Phys. Rev. Lett. 99, 267602 (2007)

    ADS  Google Scholar 

  6. J.Y. Jo, S.M. Yang, T.H. Kim, H.N. Lee, J.-G. Yoon, S. Park, Y. Jo, M.H. Jung, T.W. Noh, Phys. Rev. Lett. 102, 045701 (2009)

    ADS  Google Scholar 

  7. A. Grigoriev, D.-H. Do, D.M. Kim, C.-B. Eom, B. Adams, E.M. Dufresne, P.G. Evans, Phys. Rev. Lett. 96, 187601 (2006)

    ADS  Google Scholar 

  8. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683–706 (2014)

    Google Scholar 

  9. Z.M. Dang, Y.H. Lin, C.W. Nan, Adv. Mater. 15(19), 1625–1629 (2003)

    Google Scholar 

  10. Z. Xiao, Q. Dong, P. Sharma, Y. Yuan, B. Mao, W. Tian, A. Gruverman, J. Huang, Adv. Energy Mater. 3(12), 1581–1588 (2013)

    Google Scholar 

  11. W. Gao, L. Chang, Lu. He Ma, J.Y. You, J. Liu, Z. Liu, J. Wang, G. Yuan, NPG Asia Mater. 7, 189 (2015)

    Google Scholar 

  12. N. Van Huynh, J.-H. Lee, D. Whang, D.J. Kang, Nano. Micro. Lett. 7(1), 35–41 (2015)

    Google Scholar 

  13. V. Sencadas, P. Martins, A. Pitaes, M. Benelmekki, J.L.G. Ribelles, S. Lanceros-Mendez, Langmuir 27, 7241–7249 (2011)

    Google Scholar 

  14. S.L. Miller, R.D. Nasby, J.R. Schwank, M.S. Rodgers, P.V. Dressendorfer, J. Appl. Phys. 68, 6463 (1990)

    ADS  Google Scholar 

  15. G. Canavese, S. Stassi, V. Cauda, A. Verna, P. Motto, A. Chiodoni, S.L. Marasso, D. Demarchi, IEEE Sens. J. 14, 2237–2244 (2013)

    ADS  Google Scholar 

  16. R. Bouregba, B. Vilquin, G. Le Rhun, G. Poullain, B. Domenges, Rev. Sci. Instrum. 74, 4429 (2003)

    ADS  Google Scholar 

  17. E.A. Pecherskaya, Meas. Tech. 50, 1101–1107 (2007)

    Google Scholar 

  18. R. Chikkonda, A. Ravindran, S. Saikia, A.R.T. Sathyanathan, A. Chelvane, A. Subramanian, J.R.K. Chinnayya, R.B. Ganginen, J. Appl Polym Sci. 138(11), 50018 (2020)

    Google Scholar 

  19. J. Roy, R. Chikkonda, G. Kishor, A.R.T. Sathyanathan, K.C.J. Raju, R.B. Gangineni, J. Appl Polym. Sci. 139, 52187 (2022)

    Google Scholar 

  20. A. Gruverman, O. Kolosov, J. Hatano, K. Takahashi, H. Tokumoto, J. Vac. Sci. Technol. B 13, 1095 (1995)

    Google Scholar 

  21. A. Gruverman, S.V. Kalinin, J. Mater. Sci. 41, 107–116 (2006)

    ADS  Google Scholar 

  22. S.V. Kalinin, D.A. Bonnell, Phys. Rev. B. 65, 1254081 (2002)

    Google Scholar 

  23. S.V. Kalinin, A. Rar, S. Jesse, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 2226–2252 (2006)

    Google Scholar 

  24. S.V. Kalinin, A. Gruverman, Scanning probe microscopy: electrical and electromechanical phenomena at the nanoscale, vol. 1 (Springer, New York, 2007)

    Google Scholar 

  25. A. Gruverman, Recent advances in functional testing of ferroelectric nanostructures. Ferroelectrics 433(1), 88–106 (2012)

    ADS  Google Scholar 

  26. S.V. Kalinin, B.J. Rodriguez, S.H. Kim, S.K. Hong, A. Gruverman, E.A. Eliseev, Appl. Phys. Lett. 92, 152906 (2008)

    ADS  Google Scholar 

  27. P. Bintachitt, S. Trolier-McKinstry, K. Seal, S. Jesse, S.V. Kalinin, Appl. Phys. Lett. 94, 042906 (2009)

    ADS  Google Scholar 

  28. A. Gruverman, M. Alexe, D. Meier, Nat. Commun. 10, 1661 (2019)

    ADS  Google Scholar 

  29. K. Pramod, R.B. Gangineni, Org. Electron. 42, 47–51 (2017)

    Google Scholar 

  30. M.S. Ravisankar, K. Pramod, R.B. Gangineni, J. Mater. Sci. 30, 20716–20724 (2019)

    Google Scholar 

  31. Na. Liu, R. Dittmer, R.W. Stark, C. Dietz, Nanoscale 7, 11787–11796 (2015)

    ADS  Google Scholar 

  32. A. Gannepalli, D.G. Yablon, A.H. Tsou, R. Proksch, Nanotechnology 22, 355705 (2011)

    Google Scholar 

  33. Y. Sun, Hu. Zhigang, D. Zhao, K. Zeng, Nanoscale 9, 12163–12169 (2017)

    Google Scholar 

  34. H. Uršič, U. Prah, Proc. R. Soc. A 475, 20180782 (2019)

    ADS  Google Scholar 

  35. N.C. Miller, H.M. Grimm, W.S. Horne, G.R. Hutchison, Nanoscale Adv. 1, 4834–4843 (2019)

    ADS  Google Scholar 

  36. S.J. Kang, Y.J. Park, I. Bae, K.J. Kim, H.-C. Kim, S. Bauer, E.L. Thamas, C. Park, Adv. Funct. Mater. 19, 2812–2818 (2009)

    Google Scholar 

  37. M. Li, H.J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P.W.M. Blom, D.M. de Leeuw, Nat. Mater. 12, 433–438 (2013)

    ADS  Google Scholar 

  38. K. Pramod, R.B. Gangineni, Curr. Appl. Phys. 17, 1469–1475 (2017)

    ADS  Google Scholar 

  39. B.B. Tian, J.L. Wang, S. Fusil, Y. Liu, X.L. Zhao, S. Sun, H. Shen, T. Lin, J.L. Sun, C.G. Duan, M. Bibes, A. Barthélémy, B. Dkhil, V. Garcia, X.J. Meng, J.H. Chu, Nat. Commun. 7, 11502 (2016)

    ADS  Google Scholar 

  40. R. Gyse, I. Stolichnov, A.K. Tagantsev, N. Setter, P. Mokrý, J. Appl. Phys. 103, 084120 (2008)

    ADS  Google Scholar 

  41. E.L. Colla, I. Stolichnov, P.E. Bradely, N. Setter, Appl. Phys. Lett. 82, 1604 (2003)

    ADS  Google Scholar 

  42. S.V. Kalinin, D.A. Bonnel, Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. 65, 125408 (2002)

    ADS  Google Scholar 

  43. A. Gruverman, Appl. Phys. Lett. 75, 1452 (1999)

    ADS  Google Scholar 

  44. H. Fujisawa, T. Yagi, M. Shimizu, H. Niu, Ferroelectrics 269(1), 21–26 (2002)

    ADS  Google Scholar 

  45. D.J. Kim, J.Y. Jo, T.H. Kim, S.M. Yang, B. Chen, Y.S. Kim, T.W. Noh, Appl. Phys. Lett. 91, 132903 (2007)

    ADS  Google Scholar 

  46. P. Gerber, A. Roelofs, C. Kügeler, U. Böttger, R. Waser, J. Appl. Phys. 96, 2800 (2004)

    ADS  Google Scholar 

  47. M. Mai, S. Ke, P. Lin, X. Zeng, APL Mater. 4, 046107 (2016)

    ADS  Google Scholar 

  48. J.H. Wang, Smart Mater. Struct. 26, 105045 (2017)

    ADS  Google Scholar 

  49. M. Stewart, S. Lepadatu, L.N. McCartney, M.G. Cain, L. Wright, J. Crain, D.M. Newns, G.J. Martyna, APL Mater. 3, 026103 (2015)

    ADS  Google Scholar 

  50. Y. Ishibashi, Y. Takagi, J. Phys. Soc. Jpn. 31, 506–510 (1971)

    ADS  Google Scholar 

  51. H. Orihara, S. Hashimoto, Y. Ishibashi, J. Phys. Soc. Jpn. 63, 1031–1035 (1994)

    ADS  Google Scholar 

  52. Y. Ishibashi, Integr. Ferroelectr. 9, 57–61 (1995)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the UGC- MRP/F. No-41-846/2012 (SR), DAE-BRNS with sanction No: 2012/20/37P/09/BRNS, DST with sanction Dy. No. SERB/F/0724/2013-2014, UGC-SAP DRS-II, DST-FIST Level-II at the Department of Physics and also Central Instrumentation Facility (CIF) at Pondicherry University. M.S. Ravisankar would like to acknowledge the UGC for BSR Fellowship.

Funding

UGC-MRP, UGC-MRP/F.No-41-846/2012 (SR), R. B. Gangineni, DAE-BRNS, No: 2012/20/37P/09/BRNS, R. B. Gangineni, DST, Dy.No.SERB/F/0724/2013-2014, R. B. Gangineni, UGC-SAP, UGC-SAP F.530/15/DRS/2009, R. B. Gangineni

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Gangineni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravisankar, M.S., Pramod, K. & Gangineni, R.B. Effect of the top electrode on local piezoelectric and the ferroelectric response of PVDF thin films in PVDF/Au/Si and Ag/PVDF/Au/Si multilayers. Appl. Phys. A 129, 146 (2023). https://doi.org/10.1007/s00339-023-06421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06421-7

Keywords

Navigation