Skip to main content
Log in

The effect of Stone–Wales defect on the sensitivity of a ZnO monolayer in detection of PH3 and AsH3 gases: a DFT study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Arsine is the most powerful hemolytic toxin with high flammability and toxicity, which has been used in different areas. Short-term exposure to arsenic might result in a permanent injury or even death. Thus, detection of this gas is of paramount importance. Density functional theory calculations were performed in order to scrutinize the adsorption of XH3 (X = As or P) on a ZnO nano-sheet with a Stone–Wales defect (SWD-ZnONS) and a pristine ZnONS. The interaction of the pure ZnONS with XH3 was predicted to be a physical adsorption. Moreover, the electronic properties of the nano-sheet did not change appreciably. The interaction of AsH3 with the SWD-ZnONS was stronger than that of PH3. The HOMO–LUMO gap of the SWD-ZnONS reduced substantially by approximately − 27.1% when AsH3 was adsorbed, thus raising the electrical conductance significantly. Thus, converting this significant change in electrical conductance into an electronic signal was possible, indicating the possibility of using the SWD-ZnONS as a sensor for detecting AsH3. Furthermore, the adsorption process caused a significant reduction in the work function of the SWD-ZnONS, indicating the possibility of using this nano-sheet as a work function-type sensor to detect AsH3. The computed recovery time for the SWD-ZnONS was 9.5 s for the adsorption of AsH3, which was short. The theoretical findings of this work can provide insights into the practical applications of ZnO nano-structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data will be available if required.

Code availability

Not applicable.

References

  1. K. Pande, D. Reep, A. Srivastava, S. Tiwari, J.M. Borrego, S.K. Ghandhi, Device quality polycrystalline gallium arsenide on germanium/molybdenum substrates. J. Electrochem. Soc. 126, 300 (1979)

    ADS  Google Scholar 

  2. K.W. Kizer, Toxic inhalations. Emerg. Med. Clin. North Am. 2, 649–666 (1984)

    Google Scholar 

  3. S.F. Rastegar, A.A. Peyghan, N.L. Hadipour, Response of Si-and Al-doped graphenes toward HCN: a computational study. Appl. Surf. Sci. 265, 412–417 (2013)

    ADS  Google Scholar 

  4. Y. Zhang, C. Li, H. Ji, X. Yang, M. Yang, D. Jia, X. Zhang, R. Li, J. Wang, Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int. J. Mach. Tools Manuf 122, 81–97 (2017). https://doi.org/10.1016/j.ijmachtools.2017.06.002

    Article  Google Scholar 

  5. S. Gaskin, L. Heath, D. Pisaniello, R. Evans, J.W. Edwards, M. Logan, C. Baxter, Hydrogen sulphide and phosphine interactions with human skin in vitro: Application to hazardous material incident decision making for skin decontamination. Toxicol. Ind. Health 33, 289–296 (2016)

    Google Scholar 

  6. P. Okunieff, S. Swarts, P. Keng, W. Sun, W. Wang, J. Kim, S. Yang, H. Zhang, C. Liu, J.P. Williams, A.K. Huser, L. Zhang, Antioxidants reduce consequences of radiation exposure, in Oxygen Transport to Tissue XXIX. ed. by K.A. Kang, D.K. Harrison, D.F. Bruley (Springer, Boston, 2008), pp.165–178

    Google Scholar 

  7. J.L. Burgess, J. Burgess, Phosphine exposure from a methamphetamine laboratory investigation. J. Toxicol. Clin. Toxicol. 39, 165–168 (2001)

    Google Scholar 

  8. Baker, R. O, & Krieger, R. (2002). Phosphine exposure to applicators and bystanders from rodent burrow treatment with aluminum phosphide. Proceedings of the Vertebrate Pest Conference, 20.

  9. B.D. Banerjee, V. Seth, R.S. Ahmed, Pesticide-induced oxidative stress: Perspective and trends. Rev. Environ. Health 16, 1–40 (2001)

    Google Scholar 

  10. M. Yang, C. Li, Y. Zhang, D. Jia, X. Zhang, Y. Hou, R. Li, J. Wang, Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int. J. Mach. Tools Manuf 122, 55–65 (2017). https://doi.org/10.1016/j.ijmachtools.2017.06.003

    Article  Google Scholar 

  11. Y. Zhang, C. Li, D. Jia, D. Zhang, X. Zhang, Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int. J. Mach. Tools Manuf 99, 19–33 (2015). https://doi.org/10.1016/j.ijmachtools.2015.09.003

    Article  Google Scholar 

  12. X. Wang, C. Li, Y. Zhang, Z. Said, S. Debnath, S. Sharma, M. Yang, T. Gao, Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. Int. J. Adv. Manuf. Technol. 119, 631–646 (2022). https://doi.org/10.1007/s00170-021-08235-4

    Article  Google Scholar 

  13. X. Cui, C. Li, Y. Zhang, Z. Said, S. Debnath, S. Sharma, H.M. Ali, M. Yang, T. Gao, R. Li, Grindability of titanium alloy using cryogenic nanolubricant minimum quantity lubrication. J. Manuf. Process. 80, 273–286 (2022). https://doi.org/10.1016/j.jmapro.2022.06.003

    Article  Google Scholar 

  14. W. Xu, C. Li, Y. Zhang, H.M. Ali, S. Sharma, R. Li, M. Yang, T. Gao, M. Liu, X. Wang, Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. Int. J. Extreme Manuf. 4, 042003 (2022). https://doi.org/10.1088/2631-7990/ac9652

    Article  Google Scholar 

  15. X. Zhang, C. Li, Y. Zhang, D. Jia, B. Li, Y. Wang, M. Yang, Y. Hou, X. Zhang, Performances of Al2O3/SiC hybrid nanofluids in minimum-quantity lubrication grinding. Int. J. Adv. Manuf. Technol. 86, 3427–3441 (2016). https://doi.org/10.1007/s00170-016-8453-3

    Article  Google Scholar 

  16. Z. Chen, X. He, J. Ge, G. Fan, L. Zhang, A.M. Parvez, G. Wang, Controllable fabrication of nanofibrillated cellulose supported HKUST-1 hierarchically porous membranes for highly efficient removal of formaldehyde in air. Ind Crops Prod 186, 115269 (2022). https://doi.org/10.1016/j.indcrop.2022.115269

    Article  Google Scholar 

  17. J. Li, Z. Liang, Z. Chen, Z. Zhang, H. Liu, Z. Liu, Z. Xu, Engineering unsaturated sulfur site in three-dimension MoS2@ rGO nanohybrids with expanded interlayer spacing and disordered structure for gaseous elemental mercury trap. Chem. Eng. J. 453, 139767 (2023). https://doi.org/10.1016/j.cej.2022.139767

    Article  Google Scholar 

  18. R. Wu, Y. Tan, F. Meng, Y. Zhang, Y.-X. Huang, PVDF/MAF-4 composite membrane for high flux and scaling-resistant membrane distillation. Desalination 540, 116013 (2022). https://doi.org/10.1016/j.desal.2022.116013

    Article  Google Scholar 

  19. S. Lu, J. Guo, S. Liu, B. Yang, M. Liu, L. Yin, W. Zheng, An improved algorithm of drift compensation for olfactory sensors. Appl. Sci. 12, 9529 (2022). https://doi.org/10.3390/app12199529

    Article  Google Scholar 

  20. W. Dang, J. Guo, M. Liu, S. Liu, B. Yang, L. Yin, W. Zheng, A semi-supervised extreme learning machine algorithm based on the new weighted kernel for machine smell. Appl. Sci. 12, 9213 (2022). https://doi.org/10.3390/app12189213

    Article  Google Scholar 

  21. J. Wang, K. Ai, L. Lu, Flame-retardant porous hexagonal boron nitride for safe and effective radioactive iodine capture. J. Mater. Chem. A 7, 16850–16858 (2019). https://doi.org/10.1039/C9TA04489B

    Article  Google Scholar 

  22. M.S. Khan, A. Srivastava, R. Chaurasiya, M.S. Khan, P. Dua, NH3 and PH3 adsorption through single walled ZnS nanotube: first principle insight. Chem. Phys. Lett. 636, 103–109 (2015)

    ADS  Google Scholar 

  23. A.R. Víctor, L.D.Q. Pablo, M.Y. Nahuel, General adsorption model for H2S, H2Se, H2Te, NH3, PH3, AsH3 and SbH3 on the V2O5(001) surface including the van der Waals interaction. Chem. Phys. Lett. 720, 58–63 (2019)

    Google Scholar 

  24. M. Noei, A.A. Salari, N. Ahmadaghaei, Z. Bagheri, A.A. Peyghan, DFT study of the dissociative adsorption of HF on an AlN nanotube. C. R. Chim. 16, 985–989 (2013)

    Google Scholar 

  25. A.A. Peyghan, M.T. Baei, M. Moghimi, S. Hashemian, Phenol adsorption study on pristine, Ga-, and In-doped (4, 4) armchair single-walled boron nitride nanotubes. Comput. Theor. Chem. 997, 63–69 (2012)

    Google Scholar 

  26. S. Park, Y.W. Jung, G.M. Ko, D.Y. Jeong, C. Lee, Enhanced NO2 gas sensing performance of the In2O3-decorated SnO2 nanowire sensor. Appl. Phys. A 127, 898 (2021)

    ADS  Google Scholar 

  27. S. Park, G.-J. Sun, H. Kheel, T. Ko, H.W. Kim, C. Lee, Light-activated NO2 gas sensing of the networked CuO-decorated ZnS nanowire gas sensor. Appl. Phys. A 122, 504 (2016)

    ADS  Google Scholar 

  28. A.A. Peyghan, M. Noei, Fluorination of BC3 nanotubes: DFT studies. J. Mol. Model. 19, 3941–3946 (2013)

    Google Scholar 

  29. A.A. Peyghan, M. Noei, Z. Bagheri, Functionalization of the pristine and stone-wales defected BC3 graphenes with pyrene. J. Mol. Model. 20, 2539 (2014)

    Google Scholar 

  30. J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, S. Iijima, Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl. Phys. Lett. 98, 091502 (2011)

    ADS  Google Scholar 

  31. L. Wen, F. Li, H.-M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 28, 4306–4337 (2016)

    Google Scholar 

  32. Z. Xu, C. Gao, Graphene fiber: A new trend in carbon fibers. Mater. Today 18, 480–492 (2015)

    Google Scholar 

  33. Y.Y. Yang, Y.D. Gong, C.H. Li, X.L. Wen, J.Y. Sun, Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process. J. Mater. Process. Technol. 291, 117023 (2021). https://doi.org/10.1016/j.jmatprotec.2020.117023

    Article  Google Scholar 

  34. H. Li, Y. Zhang, C. Li, Z. Zhou, X. Nie, Y. Chen, H. Cao, B. Liu, N. Zhang, Z. Said, Extreme pressure and antiwear additives for lubricant: academic insights and perspectives. Int. J. Adv. Manuf. Technol. (2022). https://doi.org/10.1007/s00170-021-08614-x

    Article  Google Scholar 

  35. B.C. Wood, S.Y. Bhide, D. Dutta, V.S. Kandagal, A.D. Pathak, S.N. Punnathanam, K.G. Ayappa, S. Narasimhan, Methane and carbon dioxide adsorption on edge-functionalized graphene: A comparative DFT study. J. Chem. Phys. 137, 054702 (2012)

    ADS  Google Scholar 

  36. T. Gao, Y. Zhang, C. Li, Y. Wang, Y. Chen, Q. An, S. Zhang, H.N. Li, H. Cao, H.M. Ali, Fiber-reinforced composites in milling and grinding: Machining bottlenecks and advanced strategies. Front. Mech. Eng. 17, 1–35 (2022). https://doi.org/10.1007/s11465-022-0680-8

    Article  Google Scholar 

  37. S. Sahoo, S.K. Barik, A.P.S. Gaur, M. Correa, G. Singh, R.K. Katiyar, V.S. Puli, J. Liriano, R.S. Katiyar, Microwave assisted synthesis of ZnO nano-sheets and their application in UV-detector. ECS J. Solid State Sci. Technol. 1, Q140 (2012)

    Google Scholar 

  38. J. Chauhan, N. Shrivastav, A. Dugaya, D. Pandey, Synthesis and characterization of Ni and Cu doped ZnO. J. Nanomed. Nanotechnol 1, 26–34 (2017)

    Google Scholar 

  39. H. Li, Y. Zhang, C. Li, Z. Zhou, X. Nie, Y. Chen, H. Cao, B. Liu, N. Zhang, Z. Said, Cutting fluid corrosion inhibitors from inorganic to organic: Progress and applications. Korean J. Chem. Eng. (2022). https://doi.org/10.1007/s11814-021-1057-0

    Article  Google Scholar 

  40. Y. Xing, Z. Xi, Z. Xue, X. Zhang, J. Song, R. Wang, J. Xu, Y. Song, S.-L. Zhang, D. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 83, 1689–1691 (2003)

    ADS  Google Scholar 

  41. J. Antony, X. Chen, J. Morrison, L. Bergman, Y. Qiang, D.E. McCready, M.H. Engelhard, ZnO nanoclusters: Synthesis and photoluminescence. Appl. Phys. Lett. 87, 241917 (2005)

    ADS  Google Scholar 

  42. Q. Xiao, S. Huang, J. Zhang, C. Xiao, X. Tan, Sonochemical synthesis of ZnO nanosheet. J. Alloy. Compd. 459, L18–L22 (2008)

    Google Scholar 

  43. X. Wang, C. Li, Y. Zhang, H.M. Ali, S. Sharma, R. Li, M. Yang, Z. Said, X. Liu, Tribology of enhanced turning using biolubricants: A comparative assessment. Tribol. Int. (2022). https://doi.org/10.1016/j.triboint.2022.107766

    Article  Google Scholar 

  44. D. Ju, H. Xu, J. Zhang, J. Guo, B. Cao, Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing. Sens. Actuators, B Chem. 201, 444–451 (2014)

    Google Scholar 

  45. A.H. Mashhadzadeh, M. Fathalian, M.G. Ahangari, M. Shahavi, DFT study of Ni, Cu, Cd and Ag heavy metal atom adsorption onto the surface of the zinc-oxide nanotube and zinc-oxide graphene-like structure. Mater. Chem. Phys. 220, 366–373 (2018)

    Google Scholar 

  46. L. Xue, C. Zhang, T. Shi, S. Liu, H. Zhang, M. Sun, F. Liu, Y. Liu, Y. Wang, X. Gu, Unraveling the improved CO2 adsorption and COOH* formation over Cu-decorated ZnO nanosheets for CO2 reduction toward CO. Chem. Eng. J. 452, 139701 (2023)

    Google Scholar 

  47. I. Ayoub, V. Kumar, R. Abolhassani, R. Sehgal, V. Sharma, R. Sehgal, H.C. Swart, Y.K. Mishra, Advances in ZnO: Manipulation of defects for enhancing their technological potentials. Nanotechnol. Rev. 11, 575–619 (2022)

    Google Scholar 

  48. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comp. Chem. 14, 1347–1363 (1993)

    Google Scholar 

  49. N. O’Boyle, A. Tenderholt, K. Langner, cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)

    Google Scholar 

  50. Y.P. Burk, I.A. Koppel, I. Koppel, I. Leito, O. Travnikova, Critical test of performance of B3LYP functional for prediction of gas-phase acidities and basicities. Chem. Phys. Lett. 323, 482–489 (2000)

    ADS  Google Scholar 

  51. A.A. Peyghan, M. Moradi, First-principle study of methanol adsorption on Ni (Pd)-decorated graphene. J. Iran. Chem. Soc. 12, 751–756 (2015)

    Google Scholar 

  52. M. Nayebzadeh, A.A. Peyghan, H. Soleymanabadi, Density functional study on the adsorption and dissociation of nitroamine over the nanosized tube of MgO. Phys. E. 62, 48–54 (2014)

    Google Scholar 

  53. A. Hamed Mashhadzadeh, M. Fathalian, M. Ghorbanzadeh Ahangari, M.H. Shahavi, DFT study of Ni, Cu, Cd and Ag heavy metal atom adsorption onto the surface of the zinc-oxide nanotube and zinc-oxide graphene-like structure. Mater. Chem. Phys. 220, 366–373 (2018)

    Google Scholar 

  54. A. Menazea, N.S. Awwad, H.A. Ibrahium, K.H. Alharbi, M.S. Alqahtani, Titanium doping effect on the sensing performance of ZnO nanosheets toward phosgene gas. Phys. Scr. 97, 055816 (2022)

    ADS  Google Scholar 

  55. P. Xu, L. Cui, S. Gao, N. Na, A.G. Ebadi, A theoretical study on sensing properties of in-doped ZnO nanosheet toward acetylene. Mol. Phys. 120, e2002957 (2022)

    ADS  Google Scholar 

  56. Y. Fang, D.D. Yang, C.Y. Xiang, M. Shi, H. Zhao, H. Asadi, A density functional study on the formaldehyde recognition by Al-doped ZnO nanosheet. J. Mol. Graph. Model. 99, 107630 (2020)

    Google Scholar 

  57. A.A. Peyghan, H. Soleymanabadi, Adsorption of H2S at Stone-Wales defects of graphene-like BC3: a computational study. Mol. Phys. 112, 2737–2745 (2014)

    ADS  Google Scholar 

  58. B. Fellmuth, C. Gaiser, J. Fischer, Determination of the Boltzmann constant—status and prospects. Meas. Sci. Technol. 17, R145 (2006)

    ADS  Google Scholar 

  59. M. Ali, N. Amrane, N. Tit, Relevance of defects in ZnO nanotubes for selective adsorption of H2S and CO2 gas molecules: Ab-initio investigation. Results in Physics 16, 102907 (2020)

    Google Scholar 

  60. H. Chen, Y. Qu, J. Ding, H. Fu, Adsorption behavior of graphene-like ZnO monolayer with oxygen vacancy defects for NO2: A DFT study. Superlattices Microstruct. 134, 106223 (2019)

    Google Scholar 

  61. A.A. Peyghan, S.P. Laeen, S.A. Aslanzadeh, M. Moradi, Hydrogen peroxide reduction in the oxygen vacancies of ZnO nanotubes. Thin Solid Films 556, 566–570 (2014)

    ADS  Google Scholar 

  62. H.B. Michaelson, The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729–4733 (1977)

    ADS  Google Scholar 

  63. R. Garg, N.K. Dutta, N. Roy Choudhury, Work function engineering of graphene. Nanomaterials 4, 267–300 (2014)

    Google Scholar 

  64. M. Samadizadeh, S.F. Rastegar, A.A. Peyghan, The electronic response of nano-sized tube of BeO to CO molecule: A density functional study. Struct. Chem. 26, 809–814 (2015)

    Google Scholar 

  65. A. Bano, J. Krishna, D.K. Pandey, N. Gaur, An ab initio study of sensing applications of MoB 2 monolayer: A potential gas sensor. Phys. Chem. Chem. Phys. 21, 4633–4640 (2019)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding authors

Correspondence to Mustafa M. Kadhim or S. Ahmed Abdullaha.

Ethics declarations

Conflicts of interest

There is no conflict of interest.

Ethics approval

We approved all Ethics.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 523 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhim, M.M., Abdullaha, S.A., Taban, T.Z. et al. The effect of Stone–Wales defect on the sensitivity of a ZnO monolayer in detection of PH3 and AsH3 gases: a DFT study. Appl. Phys. A 129, 159 (2023). https://doi.org/10.1007/s00339-023-06405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06405-7

Keywords

Navigation