Skip to main content
Log in

Role of wet chemical saw damage removal process in texturing of c-Si and performance of a-Si:H/c-Si heterojunction solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silicon heterojunction (SHJ) solar cells' performance primarily depends on silicon surface conditioning. Therefore, it is necessary to control the uniformity of the textured silicon surface by any means, either by the initial saw damage removal (SDR) or during the texturing. In this work, we have explored the effect of SDR treatment on as-cut silicon wafers for controlling the textured silicon surface morphology in SHJ device performance. We find a direct correlation between the alkali concentration of the SDR solution and the resulting surface morphology after subsequent texturing, as well as the silicon surface passivation and SHJ device performance. It is reflected that better device performance can be achieved by initially controlling the silicon surface obtained by choosing an appropriate concentration of the SDR solution. An intermediate concentration of 30 wt.% NaOH solution formed uniform square pits, which led to the formation of nearly homogeneous pyramidal distribution after texturing. This optimized SDR process yielded an arithmetic average reflectance of ~ 12% from textured silicon surfaces and an effective minority carrier lifetime of > 1 ms of symmetrically passivated samples. SHJ solar cells are fabricated with the optimized SDR-processed wafers, and a power conversion efficiency of ~ 18.2% with an open-circuit voltage of 701 mV is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be available on request.

References:

  1. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy 02(05), 17032 (2017).

    Article  ADS  Google Scholar 

  2. E. BELLINI, “Longi’s heterojunction solar cell hits 26.5% – pv magazine International,” pv-magazine, 2022 (Accessed 15 Sep. 2022).

  3. DAVID CARROLL, “SunDrive achieves 26.41% efficiency with copper-based solar cell tech,” pv magazine, 2022 (Accessed 20 Sep. 2022).

  4. E. Maruyama, A. Terakawa, M. Taguchi, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata, and M. Tanaka, in 2006 IEEE 4th World Conf. Photovolt. Energy Conf. (IEEE, 2006), pp. 1455–1460.

  5. A. Descoeudres, C. Allebé, N. Badel, L. Barraud, F. Jonathan Champliaud, A. Debrot, A. Faes, J. Lachowicz, S. Levrat, L. Nicolay, L. Sansonnens, M. Despeisse, C. Ballif, In Energy Procedia (Elsevier B.V, Amsterdam, 2015), pp.508–514

    Google Scholar 

  6. M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, O. Oota, Prog. Photovoltaics Res. Appl. 8, 503 (2000)

    Article  Google Scholar 

  7. A. Pandey, S. Bhattacharya, J. Panigrahi, S. Mandal, V.K. Komarala, Phys. Status Solidi Appl. Mater. Sci. 219, 2200183 (2022)

    Article  ADS  Google Scholar 

  8. P. Campbell, Sol. Energy Mater. 21, 165 (1990)

    Article  Google Scholar 

  9. B. Stegemann, J. Kegel, M. Mews, E. Conrad, L. Korte, U. Sturzebecher, H. Angermann, in Energy Procedia (Elsevier B.V, Amsterdam, 2014), pp.219–228

    Google Scholar 

  10. S. Olibet, C. Monachon, A. Hessler-Wyser, E. Vallat-Sauvain, S. De Wolf, L. Fesquet, J. Damon-Lacoste, and C. Ballif, in 23rd Eur. Photovolt. Sol. Energy Conf. (2008), pp. 1140–1144.

  11. U.K. Das, M.Z. Burrows, M. Lu, S. Bowden, R.W. Birkmire, Appl. Phys. Lett. 92, 063504 (2008)

    Article  ADS  Google Scholar 

  12. M. Mews, C. Leendertz, M. Algasinger, S. Koynov, L. Korte, Phys. Status Solidi Rapid Res. Lett. 8, 831 (2014)

    Article  ADS  Google Scholar 

  13. R.S. Davidsen, H. Li, A. To, X. Wang, A. Han, J. An, J. Colwell, C. Chan, A. Wenham, M.S. Schmidt, A. Boisen, O. Hansen, S. Wenham, A. Barnett, Sol. Energy Mater. Sol. Cells 144, 740 (2016)

    Article  Google Scholar 

  14. H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, R. Alcubilla, Nat. Nanotechnol. 10, 624 (2015)

    Article  ADS  Google Scholar 

  15. M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A.N. Sprafke, J. Ziegler, M. Zilk, R.B. Wehrspohn, Adv. Opt. Mater. 3, 147 (2015)

    Article  Google Scholar 

  16. B. Iandolo, M. Plakhotnyuk, R. S. Davidsen, E. Stamate, O. Hansen, and S. Nunomura, in 2018 IEEE 7th World Conf. Photovolt. Energy Conversion, WCPEC 2018 - A Jt. Conf. 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC (2018), pp. 2135–2137.

  17. H. Park, S. Kwon, J.S. Lee, H.J. Lim, S. Yoon, D. Kim, Sol. Energy Mater. Sol. Cells 93, 1773 (2009)

    Article  Google Scholar 

  18. L. Sun, J. Tang, Appl. Surf. Sci. 255, 9301 (2009)

    Article  ADS  Google Scholar 

  19. W. van Sark, L. Korte, F. Roca, Physics and technology of amorphous-crystalline heterostructure silicon solar cells (Springer Berlin Heidelberg, Berlin Heidelberg, 2012), pp.161–221

    Book  Google Scholar 

  20. S.Y. Lien, Y.S. Cho, Y. Shao, C.H. Hsu, C.C. Tsou, W. Yan, P. Han, D.S. Wuu, Int. J. Photoenergy 2015, 1–8 (2015)

    Article  Google Scholar 

  21. E. Özkol, P. Wagner, F. Ruske, B. Stannowski, L. Korte, Phys. Status Solidi Appl. Mater. Sci. 219, 2100511 (2022)

    Article  ADS  Google Scholar 

  22. S.C. Baker-Finch, K.R. McIntosh, Prog. Photovoltaics Res. Appl. 21, 960 (2013)

    Google Scholar 

  23. Z. Mrazkova, I.P. Sobkowicz, M. Foldyna, K. Postava, I. Florea, J. Pištora, P. Roca i Cabarrocas, Prog. Photovoltaics Res. Appl. 26, 369 (2018)

    Article  Google Scholar 

  24. K. Ma, X. Zeng, Q. Lei, J. Xue, Y. Wang, C. Zhao, Front. Optoelectron. 7, 46 (2014)

    Article  Google Scholar 

  25. H. Angermann, A. Laades, U. Stürzebecher, E. Conrad, C. Klimm, T.F. Schulze, K. Jacob, A. Lawerenz, L. Korte, Solid State Phenom. 187, 349 (2012)

    Article  Google Scholar 

  26. L. Wang, F. Wang, X. Zhang, N. Wang, Y. Jiang, Q. Hao, Y. Zhao, J. Power Sources 268, 619 (2014)

    Article  ADS  Google Scholar 

  27. F. Wang, Y. Zhang, M. Yang, Y. Sui, Y. Sun, L. Yang, J. Yang, X. Zhang, J. Alloys Compd. 752, 53 (2018)

    Article  Google Scholar 

  28. K. Singh, M. Nayak, S. Mudgal, S. Singh, V.K. Komarala, Sol. Energy 183, 469 (2019)

    Article  ADS  Google Scholar 

  29. A. Stapf, C. Gondek, E. Kroke, G. Roewer, in Handbook of Photovoltaic Silicon (Springer Berlin Heidelberg, Berlin, 2019), pp.311–358

    Book  Google Scholar 

  30. R. Gogolin, R. Ferré, M. Turcu, N.-P. Harder, Sol. Energy Mater. Sol. Cells 106, 47 (2012)

    Article  Google Scholar 

  31. S. De Wolf, B. Demaurex, A. Descoeudres, C. Ballif, Phys. Rev. B Condens. Matter Mater. Phys. 83, 1 (2011)

    Google Scholar 

  32. M. Edwards, S. Bowden, U. Das, M. Burrows, Sol. Energy Mater. Sol. Cells 92, 1373 (2008)

    Article  Google Scholar 

  33. C. Leendertz, N. Mingirulli, T.F. Schulze, J.P. Kleider, B. Rech, L. Korte, Appl. Phys. Lett. 98, 2009 (2011)

    Article  Google Scholar 

  34. S. Olibet, E. VallatSauvain, C. Ballif, Phys. Rev. B Condens. Matter Mater. Phys. 76, 035326 (2007)

    Article  ADS  Google Scholar 

  35. A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Phys. Rev. B 86, 165202 (2012)

    Article  ADS  Google Scholar 

  36. N. Batra, S. Vandana, M. Kumar, S.K. Sharma, P. Srivastava, P. Sharma, P.K. Singh, Sol. Energy Mater. Sol. Cells 100, 43 (2012)

    Article  Google Scholar 

  37. B. Sopori, P. Rupnowski, J. Appel, V. Mehta, C. Li, and S. Johnston, in 2008 33rd IEEE Photovolatic Spec. Conf. (IEEE 2008) pp. 1–4

  38. A. Cuevas, Energy Procedia 55, 53 (2014)

    Article  Google Scholar 

  39. Z.C. Holman, A. Descoeudres, L. Barraud, F.Z. Fernandez, J.P. Seif, S. De Wolf, C. Ballif, IEEE J. Photovoltaics 2, 7 (2012)

    Article  Google Scholar 

  40. W. Brendle, V.X. Nguyen, A. Grohe, E. Schneiderlöchner, U. Rau, G. Palfinger, J.H. Werner, Prog. Photovoltaics Res. Appl. 14, 653 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Department of Science and Technology (DST), Government of India, under the Water and Clean Energy area of the Technology Mission Division (Grant no. DST/TMD/CERI/RES/2020/48(G)). One of the authors (S.M.) would like to thank DST for providing INSPIRE Faculty award, vide sanction order number DST/INSPIRE/04/2017/000821. The authors acknowledge the central research facility, IIT Delhi, for using the scanning electron microscope. The authors also acknowledge the support from DST and MeitY of Govt. of India under the Nano-electronics Network for Research and Application (NNetRA) research project (Grant no. RP03530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vamsi Krishna Komarala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Pandey, A., Panigrahi, J. et al. Role of wet chemical saw damage removal process in texturing of c-Si and performance of a-Si:H/c-Si heterojunction solar cells. Appl. Phys. A 129, 123 (2023). https://doi.org/10.1007/s00339-023-06400-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06400-y

Keywords

Navigation