Skip to main content
Log in

Hierarchical nanoarchitectonics with three-layer (Ag/Ag2O/Ag) spherical nanoarrays with highly sensitive SERS performance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In recent years, multilayer metal arrays have received much attention in the fabrication of surface-enhanced Raman scattering (SERS) substrates. In this study, we prepared three-layer spherical nanoarrays by depositing double layers of Ag on hexagonal close-packed polystyrene (PS) sphere arrays and oxidizing the bottom layer of Ag to form oxide layer at ambient conditions, obtaining Ag/Ag2O/Ag three-layer spherical nanoarrays. By optimizing the thickness of silver layers and medium oxide layer, the SERS activity can be enhanced effectively. Using R6G molecule as the analyst, the SERS enhancement factor of the substrate can be up to 3.93 × 107, indicating that the substrate has high SERS sensitivity. It was found by the experiment that the SERS performance of the three-layer Ag nanosphere array was about 5.2 times stronger than that of the single-layer Ag nanosphere array with the same thickness, and it had good reproducibility and uniformity. It shows that ultra-thin oxide layer in the three-layer structure played a key role in SERS enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. S. Schlucker, SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 10, 1344–1354 (2009)

    Article  Google Scholar 

  2. D. Chen, K.P. Taylor, Q. Hall, J.M. Kaplan, The neuropeptides Flp-2 and Pdf-1 act in concert to arouse caenorhabditis elegans locomotion. Genetics 204, 1151–1159 (2016)

    Article  Google Scholar 

  3. V. Moisoiu, S.D. Iancu, A. Stefancu, T. Moisoiu, B. Pardini, M.P. Dragomir, N. Crisan, L. Avram, D. Crisan, I. Andras, D. Fodor, L.F. Leopold, C. Socaciu, Z. Balint, C. Tomuleasa, F. Elec, N. Leopold, SERS liquid biopsy: an emerging tool for medical diagnosis. Colloids Surf. B Biointerfaces 208, 112064 (2021)

    Article  Google Scholar 

  4. S.X. Leong, Y.X. Leong, E.X. Tan, H.Y.F. Sim, C.S.L. Koh, Y.H. Lee, C. Chong, L.S. Ng, J.R.T. Chen, D.W.C. Pang, L.B.T. Nguyen, S.K. Boong, X. Han, Y.C. Kao, Y.H. Chua, G.C. Phan-Quang, I.Y. Phang, H.K. Lee, M.Y. Abdad, N.S. Tan, X.Y. Ling, Noninvasive and point-of-care surface-enhanced Raman scattering (SERS)-based breathalyzer for mass screening of Coronavirus disease 2019 (Covid-19) under 5 min. ACS Nano 16, 2629–2639 (2022)

    Article  Google Scholar 

  5. S. Chang, S.L. Eichmann, T.-Y.S. Huang, W. Yun, W. Wang, Controlled design and fabrication of SERS–SEF multifunctional nanoparticles for nanoprobe applications: morphology-dependent SERS phenomena. J. Phys. Chem. C 121, 8070–8076 (2017)

    Article  Google Scholar 

  6. Y.M. Chen, S. Pekdemir, I. Bilican, B. Koc-Bilican, B. Cakmak, A. Ali, L.S. Zang, M.S. Onses, M. Kaya, Production of natural chitin film from Pupal shell of moth: fabrication of plasmonic surfaces for SERS-based sensing applications. Carbohydr. Polym. 262, 117909 (2021)

    Article  Google Scholar 

  7. C. Li, S. Xu, J. Yu, Z. Li, W. Li, J. Wang, A. Liu, B. Man, S. Yang, C. Zhang, Local hot charge density regulation: vibration-free pyroelectric nanogenerator for effectively enhancing catalysis and in-situ surface enhanced Raman scattering monitoring. Nano Energy 81, 105585 (2021)

    Article  Google Scholar 

  8. W. Kim, W. Hwang, N.H. Kim, J. Kim, K. Baek, K. Kim, Permselective two-dimensional polymer film-based chemical sensors. Bull. Chem. Soc. Jpn. 94, 869–871 (2021)

    Article  Google Scholar 

  9. L. Jiang, M.M. Hassan, S. Ali, H.H. Li, R. Sheng, Q.S. Chen, Evolving trends in SERS-based techniques for food quality and safety: a review. Trends Food Sci. Technol. 112, 225–240 (2021)

    Article  Google Scholar 

  10. S.Y. Ding, J. Yi, J.F. Li, B. Ren, D.Y. Wu, R. Panneerselvam, Z.Q. Tian, Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    Article  ADS  Google Scholar 

  11. Y.F. Huang, M. Zhang, L.B. Zhao, J.M. Feng, D.Y. Wu, B. Ren, Z.Q. Tian, Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. Int. Ed. Engl. 53, 2353–2357 (2014)

    Article  Google Scholar 

  12. R. Ban, Y. Yu, M. Zhang, J. Yin, B. Xu, D.Y. Wu, M. Wu, Z. Zhang, H. Tai, J. Li, J. Kang, Synergetic SERS enhancement in a metal-like/metal double-shell structure for sensitive and stable application. ACS Appl. Mater. Interfaces 9, 13564–13570 (2017)

    Article  Google Scholar 

  13. A. Jimbo, Y. Nishikado, K. Imura, Optical field and chemical environment near the surface modified gold nanoparticle assembly revealed by two-photon induced photoluminescence and surface enhanced Raman scattering. Bull. Chem. Soc. Jpn. 94, 2272–2278 (2021)

    Article  Google Scholar 

  14. S. Schlucker, Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. Engl. 53, 4756–4795 (2014)

    Article  Google Scholar 

  15. Y. Liu, S.H. Wu, X.Y. Du, J.J. Sun, Plasmonic Ag nanocube enhanced SERS biosensor for sensitive detection of oral cancer DNA based on nicking endonuclease signal amplification and heated electrode. Sensor Actuat B-Chem 338, 129854 (2021)

    Article  Google Scholar 

  16. Y.L. Zeng, F.Y. Wang, D.X. Du, S. Liu, C.B. Wang, Z.P. Xu, H.Y. Wang, ZnO nanotower arrays decorated with cubic and tetrahedral shaped Ag-Nps as hybrid SERS-active substrates. Appl. Surf. Sci. 544, 148924 (2021)

    Article  Google Scholar 

  17. L. Mikac, M. Ivanda, M. Gotic, V. Janicki, H. Zorc, T. Janci, S. Vidacek, Surface-enhanced Raman spectroscopy substrate based on Ag-coated self-assembled polystyrene spheres. J. Mol. Struct. 1146, 530–535 (2017)

    Article  ADS  Google Scholar 

  18. Y. Liu, L. Zhang, X. Liu, Y. Zhang, Y. Yan, Y. Zhao, In situ SERS monitoring of plasmon-driven catalytic reaction on gap-controlled Ag nanoparticle arrays under 785 nm irradiation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 270, 120803 (2022)

    Article  Google Scholar 

  19. L. Sabri, M. Shahabadi, M. Ghaffari-Miab, K. Forooraghi, Multilayer dielectric substrate for improved Raman spectroscopy. Opt. Commun. 451, 255–259 (2019)

    Article  ADS  Google Scholar 

  20. W.L. Syu, Y.H. Lin, A. Paliwal, K.S. Wang, T.Y. Liu, Highly sensitive and reproducible SERS substrates of bilayer Au and Ag nano-Island arrays by thermal evaporation deposition. Surf. Coat. Technol. 350, 823–830 (2018)

    Article  Google Scholar 

  21. Z. Haibao, L. Guang, Z. Xian, X. Tian, Preparation and optical properties of Au nanoparticle “Sandwich” structure (Aunps/Znns/Aunps) substrate based on Zno nanosheets template. Mater. Chem. Phys. 268, 124715 (2021)

    Article  Google Scholar 

  22. Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, Y. Tang, Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: an ultrasensitive and reproducible SERS substrate. Sci. Rep. 6, 32314 (2016)

    Article  ADS  Google Scholar 

  23. T.R. Jensen, M.D. Malinsky, C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 104, 10549–10556 (2000)

    Article  Google Scholar 

  24. J. Yu, Q. Yan, D. Shen, Co-self-assembly of binary colloidal crystals at the air–water interface. ACS Appl. Mater. Interfaces 2, 1922–1926 (2010)

    Article  Google Scholar 

  25. V. Sadasivan, C.P. Richter, L. Menon, P.F. Williams, Electrochemical self-assembly of porous alumina templates. AIChE J. 51, 649–655 (2005)

    Article  Google Scholar 

  26. N. Su, S. Guo, F. Li, B. Li, Electrodeposition of Bi–Te thin films on silicon wafer and micro-column arrays on microporous glass template. Nanomaterials (Basel) 10, 431 (2020)

    Article  Google Scholar 

  27. W. Zhang, T. Xue, L. Zhang, F. Lu, M. Liu, C. Meng, D. Mao, T. Mei, Surface-enhanced Raman spectroscopy based on a silver-film semi-coated nanosphere array. Sensors (Basel) 19, 3966 (2019)

    Article  ADS  Google Scholar 

  28. X. Hou, Q. Wang, G.M. Mao, H. Liu, R.D. Yu, X.M. Ren, Periodic silver nanocluster arrays over large-area silica nanosphere template as highly sensitive SERS substrate. Appl. Surf. Sci. 437, 92–97 (2018)

    Article  ADS  Google Scholar 

  29. G.K. Pandey, N.K. Pathak, R. Uma, R.P. Sharma, Study of surface-enhanced Raman scattering of plasmonic coupled biomolecule: role of multi-layered nanosphere. Plasmonics 13, 221–229 (2017)

    Article  Google Scholar 

  30. H. Li, B.M. Cullum, Dual layer and multilayer enhancements from silver film over nanostructured surface-enhanced Raman substrates. Applied spectroscopy 59, 410–417 (2005)

    Article  ADS  Google Scholar 

  31. V. Lotito, T. Zambelli, Self-assembly of single-sized and binary colloidal particles at air/water interface by surface confinement and water discharge. Langmuir 32, 9582–9590 (2016)

    Article  Google Scholar 

  32. S.M. Weekes, F.Y. Ogrin, W.A. Murray, P.S. Keatley, Macroscopic arrays of magnetic nanostructures from self-assembled nanosphere templates. Langmuir 23, 1057–1060 (2007)

    Article  Google Scholar 

  33. L.I. Bin, G. Niu, Y.I. Yong, X.W. Zhou, X.D. Liu, Y.E. Xin, C.Y.J.S. Wang, Fabrication and surface-enhanced Raman scattering research on polystyrene nanospheres arrays. Guang Pu Xue Yu Guang Pu Fen Xi 36, 2812-2817 (2016)

Download references

Acknowledgements

This work is supported by the National Key Scientific Instrument and Equipment Development Projects of China (2011YQ030134); Talent introduction program of Nantong University (135420602125); University general project of Jiangsu Province (21KJB140015); and special thanks to Nantong University Analysis & Testing Center of for their support of the SEM characterization results in this work.

Author information

Authors and Affiliations

Authors

Contributions

JS contributed to conceptualization, methodology, formal analysis, validation, investigation, resources, data curation, and writing—original draft. JW contributed to software, validation, formal analysis, and writing—review and editing. YJ contributed to software and project administration. JF contributed to investigation and formal analysis.

Corresponding authors

Correspondence to Yonglong Jin or Jinghuai Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Wu, J., Jin, Y. et al. Hierarchical nanoarchitectonics with three-layer (Ag/Ag2O/Ag) spherical nanoarrays with highly sensitive SERS performance. Appl. Phys. A 129, 197 (2023). https://doi.org/10.1007/s00339-022-06368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06368-1

Keywords

Navigation