Skip to main content
Log in

Hybrid silver/silver-oxide nanoparticles doped hole transport layer for efficient photon harvesting in organic solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Plasmonic nanoparticles (NPs) are employed in this investigation to assist in the enhancement of photon harvest in organic solar cells (OSCs). OSCs based on the poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) were prepared by incorporating hybrid silver/silver-oxide (Ag/Ag2O) NPs in the commonly used hole transport layer (HTL), PEDOT:PSS, in a conventional device geometry. The conductivity of PEDOT: PSS was improved by 3 wt% Ag/Ag2O NP doping. The optical absorption and aggregation of P3HT in the active layer film were also found to be improved when Ag/Ag2O NPs were incorporated in PEDOT: PSS. Consequently, the power conversion efficiency of the P3HT: PCBM-based OSCs was improved from 3.06 to 5.20% upon the incorporation of 3 wt% Ag/Ag2O in the HTL. This enormous improvement is mainly attributed to a significant increment in JSC due to the synergistic improvement in exciton generation, exciton dissociation, charge collection, and dissociation probability in the device due to localized surface Plasmon resonance and scattering by the NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The raw data of this work is made available based on the request.

References

  1. Y. Lin, M.I. Nugraha, Y. Firdaus, A.D. Scaccabarozzi, F. Aniés, A.-H. Emwas, E. Yengel, X. Zheng, J. Liu, W. Wahyudi, A simple n-dopant derived from diquat boosts the efficiency of organic solar cells to 18.3%. ACS Energy Lett. 5, 3663–3671 (2020)

    Article  Google Scholar 

  2. N. Tegegne, Photophysics and photovoltaic application of direct heteroarylation derived isoindigo based copolymers, in (Stellenbosch University, Stellenbosch, 2018)

    Google Scholar 

  3. M.T. Sajjad, A. Ruseckas, L.K. Jagadamma, Y. Zhang, I.D. Samuel, Long-range exciton diffusion in non-fullerene acceptors and coarse bulk heterojunctions enable highly efficient organic photovoltaics. J Mater Chem A 8, 15687–15694 (2020)

    Article  Google Scholar 

  4. C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. De Bettignies, C. Sentein, C. Fiorini-Debuisschert, P. Raimond, Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances. Appl. Phys. Lett. 88, 133108 (2006)

    Article  ADS  Google Scholar 

  5. F.C. Spano, C. Silva, H-and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem 65, 477–500 (2014)

    Article  ADS  Google Scholar 

  6. O.A. Ghazy, M.M. Ibrahim, F.I. Abou Elfadl, H.M. Hosni, E.M. Shehata, N.M. Deghiedy, M.R. Balboul, PEDOT: PSS incorporated silver nanoparticles prepared by gamma radiation for the application in organic solar cells. J Rad Res Applied Sci. 8, 166–172 (2015)

    Google Scholar 

  7. E.L. Lim, C.C. Yap, M.A.M. Teridi, C.H. Teh, M.H.H. Jumali, A review of recent plasmonic nanoparticles incorporated P3HT: PCBM organic thin film solar cells. Org. Electron. 36, 12–28 (2016)

    Article  Google Scholar 

  8. L. Qiao, D. Wang, L. Zuo, Y. Ye, J. Qian, H. Chen, S. He, Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres. Appl. Energy 88, 848–852 (2011)

    Article  Google Scholar 

  9. C.-H. Kim, S.-H. Cha, S.C. Kim, M. Song, J. Lee, W.S. Shin, S.-J. Moon, J.H. Bahng, N.A. Kotov, S.-H. Jin, Silver nanowire embedded in P3HT: PCBM for high-efficiency hybrid photovoltaic device applications. ACS Nano 5, 3319–3325 (2011)

    Article  Google Scholar 

  10. S. Li, Y.-L. Cao, W.-H. Li, Z.-S. Bo, A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Met. 40, 2712–2729 (2021)

    Article  Google Scholar 

  11. F. Jiang, W.C. Choy, X. Li, D. Zhang, J. Cheng, Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater. 27, 2930–2937 (2015)

    Article  Google Scholar 

  12. W. Lu, Y. Peng, Q. Chen, W. Tang, T. Pang, S. Zhang, Z. Liu, L. Yan, X. Wang, Hole transport layer free bulk heterojunction organic solar cells with high work function ITO anodes. AIP Adv. 8, 095027 (2018)

    Article  ADS  Google Scholar 

  13. A. Ali, D. Said, M. Khayyat, M. Boustimi, R. Seoudi, Improving the efficiency of the organic solar cell (CuPc/C60) via PEDOT: PSS as a photoconductor layer doped by silver nanoparticles. Results Phy 16, 102819 (2020)

    Article  Google Scholar 

  14. X.-H. Liu, L.-X. Hou, J.-F. Wang, B. Liu, Z.-S. Yu, L.-Q. Ma, S.-P. Yang, G.-S. Fu, Plasmonic-enhanced polymer solar cells with high efficiency by addition of silver nanoparticles of different sizes in different layers. Sol. Energy 110, 627–635 (2014)

    Article  ADS  Google Scholar 

  15. L. D’Lima, M. Phadke, V.D. Ashok, Biogenic silver and silver oxide hybrid nanoparticles: a potential antimicrobial against multi drug-resistant Pseudomonas aeruginosa. New J. Chem. 44, 4935–4941 (2020)

    Article  Google Scholar 

  16. M. Mumtaz, B. Ouvrard, L. Maillaud, C. Labrugere, E. Cloutet, H. Cramail, M.H. Delville, Hybrid PEDOT–metal nanoparticles–new substitutes for PEDOT: PSS in electrochromic layers–towards improved performance. Eur. J. Inorg. Chem. 2012, 5360–5370 (2012)

    Article  Google Scholar 

  17. E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S.A. Choulis, Thermal degradation mechanisms of PEDOT: PSS. Org. Electron. 10, 61–66 (2009)

    Article  Google Scholar 

  18. X. Liu, S. Huettner, Z. Rong, M. Sommer, R.H. Friend, Solvent additive control of morphology and crystallization in semiconducting polymer blends. Adv. Mater. 24, 669–674 (2012)

    Article  Google Scholar 

  19. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110, 15700–15707 (2006)

    Article  Google Scholar 

  20. S.E. Laouini, A. Bouafia, A.V. Soldatov, H. Algarni, M.L. Tedjani, G.A. Ali, A. Barhoum, Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of Phoenix dactylifera L and their azo dye photodegradation. Membranes 11, 468 (2021)

    Article  Google Scholar 

  21. L.Y. Ng, A.W. Mohammad, R. Rohani, N.H.H. Hairom, Development of a nanofiltration membrane for humic acid removal through the formation of polyelectrolyte multilayers that contain nanoparticles. Desalin. Water Treat. 57, 7627–7636 (2016)

    Article  Google Scholar 

  22. U. Holzwarth, N. Gibson, The Scherrer equation versus the’Debye-Scherrer equation’. Nat. Nanotechnol. 6, 534–534 (2011)

    Article  ADS  Google Scholar 

  23. S. Singh, A. Bharti, V.K. Meena, Green synthesis of multi-shaped silver nanoparticles: optical, morphological and antibacterial properties. J. Mater. Sci. Mater. Electron. 26, 3638–3648 (2015)

    Article  Google Scholar 

  24. F. Otieno, N.P. Shumbula, M. Airo, M. Mbuso, N. Moloto, R.M. Erasmus, A. Quandt, D. Wamwangi, Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT: PSS buffer layer. AIP Adv. 7, 085302 (2017)

    Article  ADS  Google Scholar 

  25. M. Stavytska-Barba, A.M. Kelley, Surface-enhanced Raman study of the interaction of PEDOT: PSS with plasmonically active nanoparticles. J Phy Chem C 114, 6822–6830 (2010)

    Article  Google Scholar 

  26. M.N. Gueye, A. Carella, J. Faure-Vincent, R. Demadrille, J.-P. Simonato, Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater Sci. 108, 100616 (2020)

    Article  Google Scholar 

  27. G.-H. Kim, L. Shao, K. Zhang, K.P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12, 719–723 (2013)

    Article  Google Scholar 

  28. G. Ma, T. Nishizaki, Y. Honma, K. Watanabe, T. Sasaki, Electrical Conductivity of PEDOT: PSS Film Prepared through Organic Compound Addition. Trans. Mater. Res. Soc. Jpn 38, 363–367 (2013)

    Article  Google Scholar 

  29. Y. Shi, Y. Zhou, Z. Che, J. Shang, Q. Wang, F. Liu, Y. Zhou, Degradation phenomena and degradation mechanisms for highly conductive PEDOT: PSS films. Mater. Lett. 308, 131106 (2022)

    Article  Google Scholar 

  30. E.A. Parlak, T.A. Tumay, N. Tore, Ş Sarıoğlan, P. Kavak, F. Türksoy, Efficiency improvement of PCDTBT solar cells with silver nanoparticles. Sol. Energy Mater. Sol. Cells 110, 58–62 (2013)

    Article  Google Scholar 

  31. H. Kaçuş, Ö. Metin, M. Sevim, M. Biber, A. Baltakesmez, Ş Aydoğan, A comparative study on the effect of monodisperse Au and Ag nanoparticles on the performance of organic photovoltaic devices. Opt. Mater. 116, 111082 (2021)

    Article  Google Scholar 

  32. L. Shabani, A. Mohammadi, T. Jalali, Performance analysis of polymer bulk heterojunction solar cells with plasmonic nanoparticles embedded into the P3HT: PC61BM active layer using the FDTD method. Polym. Bull. 11, 1–22 (2022)

    Google Scholar 

  33. F. Schauer, Space-charge-limited currents for organic solar cells optimisation. Sol. Energy Mater. Sol. Cells 87, 235–250 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on the support from Organization for Women in Science for the developing world (OWSD), Trieste, Italy. We would also like to acknowledge the International Science Program (ISP), Uppsala University, Sweden for providing the laboratory facilities of the polymer physics laboratory at Addis Ababa University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Newayemedhin A. Tegegne.

Ethics declarations

Conflict of interest

The authors claim that there is no known conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

339_2022_6349_MOESM1_ESM.docx

Supplementary file1 The absorption of Ag/Ag2O NPs, its crystallographic parameters, The TMM Simulation graph and the SCLC fitting are found in the SI (DOCX 92 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waketola, A.G., Hone, F.G., Mola, G.T. et al. Hybrid silver/silver-oxide nanoparticles doped hole transport layer for efficient photon harvesting in organic solar cells. Appl. Phys. A 129, 96 (2023). https://doi.org/10.1007/s00339-022-06349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06349-4

Keywords

Navigation