Skip to main content
Log in

Ferroelectric, ferromagnetic and magneto-capacitance properties of Sm-doped BiFeO3-BaTiO3 solid solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present investigation, Sm-modified solid solutions of BiFeO3-BaTiO3 (BFO-BTO) have been synthesized using a solid-state reaction route. All ceramics sintered at 980 °C for 2 h possess a pure perovskite structure. XRD patterns show that the coexistence of rhombohedral and orthorhombic phases is found at x = 0.01–0.04. The average grain size increases with x up to 0.06. The ferroelectric, ferromagnetic and magneto-capacitance properties of the system are both effectively improved under Sm substitution. The hybridization strength between Bi 6sp and O 2p increases under Sm substitution, leading to the enhancement of the ferroelectric properties of the system. From Fe L2,3- edge spectra, the hybridization strength of O 2p with Fe 3d decreases, resulting in the improvement of magnetization under Sm substitution in BFO-BTO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data for this manuscript are all available if required.

References

  1. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C: Solid State Phys. 13, 1931 (1980)

    Article  ADS  Google Scholar 

  2. F. Kubel, H. Schmid, Acta. Cryst. B 46, 698 (1990)

    Article  Google Scholar 

  3. F. Yan, T.J. Zhu, M.O. Lai, L. Lu, Scripta Mater. 63, 780 (2010)

    Article  Google Scholar 

  4. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  5. S.K. Pradhan, B.K. Roul, Phys. B: Condens. Matter 406, 3313 (2011)

    Article  ADS  Google Scholar 

  6. A. Ravalia, M. Vagadia, P. Trivedi, P.S. Solanki, K. Asokan, S. Ojha, O.P. Thakur, R.J. Choudhary, D.M. Phase, D.G. Kuberkar, Solid State Commun. 169, 10 (2013)

    Article  ADS  Google Scholar 

  7. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.-M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  ADS  Google Scholar 

  8. Q. Li, S. Bao, Y. Liu, Y. Li, Y. Jing, J. Li, J. Alloy. Compds. 682, 672 (2016)

    Article  Google Scholar 

  9. P.K. Jha, P.A. Jha, P. Singh, R. Ranjan, R.K. Dwivedi, Phys. Chem. Chem. Phys. 19, 26285 (2017)

    Article  Google Scholar 

  10. H. Singh, A. Kumar, K.L. Yadav, Mater. Sci. Eng.: B 176, 540 (2011)

    Article  Google Scholar 

  11. D. Damjanovic, Appl. Phys. Lett. 97, 062906 (2010)

    Article  ADS  Google Scholar 

  12. H. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40, 4759 (2014)

    Article  Google Scholar 

  13. B. Xun, A. Song, J. Yu, Y. Yin, J.-F. Li, B.-P. Zhang, A.C.S. Appl, Mater. Inter. 13, 4192 (2021)

    Article  Google Scholar 

  14. S. Kim, G.P. Khanal, H.-W. Nam, I. Fujii, S. Ueno, C. Moriyoshi, Y. Kuroiwa, S. Wada, J. Appl. Phys. 122, 164105 (2017)

    Article  ADS  Google Scholar 

  15. T. Zheng, J. Wu, Adv. Electron. Mater. 6, 2000079 (2020)

    Article  ADS  Google Scholar 

  16. M. Wang, Z. Xu, J. Magn. 27, 7 (2022)

    Article  Google Scholar 

  17. Q. Zheng, L. Luo, K.H. Lam, N. Jiang, Y. Guo, D. Lin, J. Appl. Phys. 116, 184101 (2014)

    Article  ADS  Google Scholar 

  18. S. Huang, Q. Li, L. Yang, J. Xu, C. Zhou, G. Chen, C. Yuan, G. Rao, Ceram. Int. 44, 8955 (2018)

    Article  Google Scholar 

  19. B.S. Kar, M.N. Goswami, P.C. Jana, P.S. Das, J. Mater. Sci.: Mater. Electron 30, 2154 (2019)

    Google Scholar 

  20. X.-H. Liu, Z. Xu, X.-Y. Wei, X. Yao, J. Am. Ceram. Soc. 91, 3731 (2008)

    Article  Google Scholar 

  21. D. Kan, L. Pálová, V. Anbusathaiah, C.J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe, I. Takeuchi, Adv. Funct. Mater. 20, 1108 (2010)

    Article  Google Scholar 

  22. S. Pattanayak, R.N.P. Choudhary, P.R. Das, Electron. Mater. Lett. 10, 165 (2014)

    Article  Google Scholar 

  23. S.K. Singh, Thin Solid Films 527, 126 (2013)

    Article  ADS  Google Scholar 

  24. F. Zhang, X. Zeng, D. Bi, K. Guo, Y. Yao, S. Lu, Materials 11, 2208 (2018)

    Article  ADS  Google Scholar 

  25. T. Wang, X.-L. Wang, S.-H. Song, Q. Ma, Ceram. Int. 46, 15228 (2020)

    Article  Google Scholar 

  26. K. Tsuzuki, K. Sakata, M. Wada, Ferroelectrics 8, 501 (1974)

    Article  ADS  Google Scholar 

  27. X. Zhang, Y. Sui, X. Wang, Y. Wang, Z. Wang, J. Alloy. Compds. 507, 157 (2010)

    Article  Google Scholar 

  28. Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Solid State Sci. 13, 2196 (2011)

    Article  ADS  Google Scholar 

  29. M. Mahesh Kumar, S. Srinath, G. S. Kumar, S. V. Suryanarayana, (1998) J. Magn. Magn. Mater. 188, 203

  30. D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Appl. Phys. Lett. 88, 212907 (2006)

    Article  ADS  Google Scholar 

  31. A. Kumar, K.L. Yadav, Phys. B: Condens. Matter 405, 4650 (2010)

    Article  ADS  Google Scholar 

  32. P. D, D. D, R. M.T, N. Kalarikkal, G. N V, (2021) Appl. Phys. A 127, 293

  33. J. Ryu, S. Priya, K. Uchino, H.-E. Kim, J. Electroceram. 8, 107 (2002)

    Article  Google Scholar 

  34. H. Yang, G. Zhang, Y. Lin, J. Alloy. Compds. 644, 390 (2015)

    Article  Google Scholar 

  35. J.W. Liang, X.L. Zhu, L. Zhu, L. Liu, S.Y. Wu, X.Q. Liu, X.M. Chen, J. Alloy. Compds. 901, 163681 (2022)

    Article  Google Scholar 

  36. F. Lin, Q. Yu, L. Deng, Z. Zhang, X. He, A. Liu, W. Shi, J. Mater. Sci. 52, 7118 (2017)

    Article  ADS  Google Scholar 

  37. F.M.F. de Groot, M. Grioni, J.C. Fuggle, J. Ghijsen, G.A. Sawatzky, H. Petersen, Phys. Rev. B 40, 5715 (1989)

    Article  ADS  Google Scholar 

  38. Z.Y. Wu, S. Gota, F. Jollet, M. Pollak, M. Gautier-Soyer, C.R. Natoli, Phys. Rev. B 55, 2570 (1997)

    Article  ADS  Google Scholar 

  39. J.-S. Kang, G. Kim, H.J. Lee, D.H. Kim, H.S. Kim, J.H. Shim, S. Lee, H. Lee, J.-Y. Kim, B.H. Kim, B.I. Min, Phys. Rev. B 77, 035121 (2008)

    Article  ADS  Google Scholar 

  40. Y. Ma, P.D. Johnson, N. Wassdahl, J. Guo, P. Skytt, J. Nordgren, S.D. Kevan, J.-E. Rubensson, T. Böske, W. Eberhardt, Phys. Rev. B 48, 2109 (1993)

    Article  ADS  Google Scholar 

  41. T. Higuchi, Y.-S. Liu, P. Yao, P.-A. Glans, J. Guo, C. Chang, Z. Wu, W. Sakamoto, N. Itoh, T. Shimura, T. Yogo, T. Hattori, Phys. Rev. B 78, 085106 (2008)

    Article  ADS  Google Scholar 

  42. T. Higuchi, T. Hattori, W. Sakamoto, N. Itoh, T. Shimura, T. Yogo, P. Yao, Y.-S. Liu, P.-A. Glans, C. Chang, Z. Wu, J. Guo, Jpn. J. Appl. Phys. 47, 7570 (2008)

    Article  ADS  Google Scholar 

  43. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, O. Eriksson, Phys. Rev. B 74, 224412 (2006)

    Article  ADS  Google Scholar 

  44. K.-T. Ko, M.H. Jung, Q. He, J.H. Lee, C.S. Woo, K. Chu, J. Seidel, B.-G. Jeon, Y.S. Oh, K.H. Kim, W.-I. Liang, H.-J. Chen, Y.-H. Chu, Y.H. Jeong, R. Ramesh, J.-H. Park, C.-H. Yang, Nat. Commun. 2, 567 (2011)

    Article  ADS  Google Scholar 

  45. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, Phys. Rev. B 71, 014113 (2005)

    Article  ADS  Google Scholar 

  46. D.H. Douma, R. Ciprian, A. Lamperti, P. Lupo, E. Cianci, D. Sangalli, F. Casoli, L. Nasi, F. Albertini, P. Torelli, A. Debernardi, Phys. Rev. B 90, 205201 (2014)

    Article  ADS  Google Scholar 

  47. C.-S. Tu, C.-S. Chen, P.-Y. Chen, H.-H. Wei, V.H. Schmidt, C.-Y. Lin, J. Anthoniappen, J.-M. Lee, J. Eur. Ceram. Soc. 36, 1149 (2016)

    Article  Google Scholar 

  48. D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, A. Tanaka, Phys. Rev. B 76, 165411 (2007)

    Article  ADS  Google Scholar 

  49. T. Higuchi, W. Sakamoto, N. Itoh, T. Shimura, T. Hattori, T. Yogo, Appl. Phys. Express 1, 011502 (2008)

    Article  ADS  Google Scholar 

  50. N. Panwar, I. Coondoo, V. Sen, S. K., in Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment, edited by C. Sikalidis (InTech, 2011).

  51. J. Wei, D. Xue, Appl. Surf. Sci. 258, 1373 (2011)

    Article  ADS  Google Scholar 

  52. A. Ablat, R. Wu, M. Mamat, J. Li, E. Muhemmed, C. Si, R. Wu, J. Wang, H. Qian, K. Ibrahim, Ceram. Int. 40, 14083 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the open research fund of the Key Laboratory of MEMS of the Ministry of Education, Southeast University. We also gratefully acknowledge the support from the photoelectron spectroscopy station, Beijing Synchrotron Radiation Facility for the supplied beamtime, and the support from the Analysis and Testing Center of Southeast University for the XPS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Lai, Y., Feng, L. et al. Ferroelectric, ferromagnetic and magneto-capacitance properties of Sm-doped BiFeO3-BaTiO3 solid solution. Appl. Phys. A 129, 77 (2023). https://doi.org/10.1007/s00339-022-06346-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06346-7

Keywords

Navigation