Skip to main content
Log in

Far-field scattering of electromagnetic waves based on all-dielectric geometric phase encoding metasurfaces

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Digital coding metasurfaces use binary digital states to represent the amplitude or phase of reflected or transmitted waves, and digitally characterize the electromagnetic properties of metasurfaces. To simplify the structure of the digitally encoded metasurface unit, we design a 3-bit geometric phase-encoded unit structure using the geometric phase principle. Based on the loss characteristics of metal materials, which seriously affect the device efficiency, we propose to use all-dielectric materials to construct an encoding unit, and then realize a terahertz wave all-dielectric geometric phase encoding metasurface. The coding metasurface can effectively control the far-field scattering angle of the incident wave. By arranging the coding units on the front surface according to different digital sequences, digital coding metasurfaces with corresponding different functions can be realized. However, based on the generalized Snell's law, the regulation of the scattering angle is limited by the period of the encoded structure. To obtain the free control of the scattering angle, we use the Fourier convolution principle in digital signal processing to perform addition and subtraction operations on different coding sequences to obtain the free control of the deflection of the abnormally scattered beam. At the same time, we also design a new checkerboard encoding metasurface that mixes gradient encoding and checkerboard encoding, which can simultaneously control four beams of anomalous scattered light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No data were generated or analyzed in the presented research.

References

  1. X. He, Tunable terahertz graphene metamaterials. Carbon 82, 229–237 (2015)

    Article  Google Scholar 

  2. X. He, X. Zhong, F. Lin, W. Shi, Investigation of graphene assisted tunable terahertz metamaterials absorber. Opt. Mater. Express 6, 331–342 (2016)

    Article  ADS  Google Scholar 

  3. X. He, F. Liu, F. Lin, W. Shi, Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides. Opt. Lett. 46, 472–475 (2021)

    Article  ADS  Google Scholar 

  4. X. He, F. Liu, F. Lin, W. Shi, Tunable terahertz Dirac semimetal metamaterials. J. Phys. D Appl. Phys. 54, 235103 (2021)

    Article  ADS  Google Scholar 

  5. J. Peng, X. He, C. Shi, J. Leng, F. Lin, F. Liu, H. Zhang, W. Shi, Investigation of graphene supported terahertz elliptical metamaterials. Physica E 124, 114309 (2020)

    Article  Google Scholar 

  6. X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, L. Wang, Analysis of the sinusoidal nanopatterning grating structure. Opt. Laser Technol. 48, 160–166 (2013)

    Article  ADS  Google Scholar 

  7. X. Jing, Y. Xu, H. Gan, Y. He, Z. Hong, High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region. IEEE Access 7, 144945–144956 (2019)

    Article  Google Scholar 

  8. L. Jiang, B. Fang, Z. Yan, J. Fan, C. Qi, J. Liu, Y. He, C. Li, X. Jing, H. Gan, Z. Hong, Terahertz high and near-zero refractive index metamaterials by double layer metal ring microstructure. Opt. Laser Technol. 123, 105949 (2020)

    Article  Google Scholar 

  9. H. Lv, X. Lu, Y. Han, Z. Mou, S. Teng, Multifocal metalens with a controllable intensity ratio. Opt. Lett. 44(10), 2518–2521 (2019)

    Article  ADS  Google Scholar 

  10. H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, Y. Cai, Vortex beam generation with variable topological charge based on a spiral slit. Nanophotonics 8(2), 317–324 (2019)

    Article  Google Scholar 

  11. J. Li, Y. Yuan, Q. Wu, S.N. Burokur, K. Zhang, Dual-band independent phase control based on high efficiency metasurface [Invited]. Chin. Opt. Lett. 19, 100501 (2021)

    Article  ADS  Google Scholar 

  12. S. Teng, Q. Zhang, H. Wang, L. Liu, H. Lv, Conversion between polarization states based on metasurface. Photon. Res. 7(3), 246–250 (2019)

    Article  Google Scholar 

  13. M.R. Akram, G. Ding, K. Chen, Y. Feng, W. Zhu, Ultra-thin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv. Mater. 32, 1907308 (2020)

    Article  Google Scholar 

  14. J. Zhang, X. Wei, I.D. Rukhlenko, H.-T. Chen, W. Zhu, Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photon. 7(1), 265–271 (2020)

    Article  Google Scholar 

  15. H. Wang, Z. Zhang, K. Zhao, W. Liu, P. Wang, Y. Lu, Independent phase manipulation of co- and cross-polarizations with all-dielectric metasurface. Chin. Opt. Lett. 19, 053601 (2021)

    Article  ADS  Google Scholar 

  16. Bo. Fang, Z. Cai, Y. Peng, C. Li, Z. Hong, X. Jing, Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials. J. Electromagn. Waves Appl. 33(11), 1375–1390 (2019)

    Article  ADS  Google Scholar 

  17. B. Fang, B. Li, Y. Peng, C. Li, Z. Hong, X. Jing, Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure. Microw. Opt. Technol. Lett. 61, 2385–2391 (2019)

    Article  Google Scholar 

  18. W. Wang, X. Jing, J. Zhao, Y. Li, Y. Tian, Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure. Opt. Appl. 47(2), 183–198 (2017)

    Article  Google Scholar 

  19. L. Jiang, B. Fang, Z. Yan et al., Improvement of unidirectional scattering characteristics based on multiple nanospheres array. Microw. Opt. Technol. Lett. 62(6), 2405–2414 (2020)

    Article  Google Scholar 

  20. Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, H. Cheng, T. Ma, Y. Lu, Ultrafast control of slow light in THz electromagnetically induced transparency metasurfaces. Chin. Opt. Lett. 19, 073602 (2021)

    Article  ADS  Google Scholar 

  21. H.S. Khaliq, I. Kim, A. Zahid, J. Kim, T. Lee, T. Badloe, Y. Kim, M. Zubair, K. Riaz, M.Q. Mehmood, J. Rho, Giant chiro-optical responses in multipolar-resonances-based single-layer dielectric metasurfaces. Photon. Res. 9(9), 09001667 (2021)

    Article  Google Scholar 

  22. M. Parry, A. Mazzanti, A. Poddubny, G.D. Valle, D.N. Neshev, A.A. Sukhorukov, Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces. Adv. Photon. 3(5), 055001 (2021)

    Article  ADS  Google Scholar 

  23. A. Du, Y. Ma, M. Liu, Z. Zhang, G. Cao, H. Li, L. Wang, P. Si, J. Shen, B. Zhou, Morphology analysis of tracks in the aerogels impacted by hypervelocity irregular particles. High Power Laser Sci. Eng. 9(2), 02000e14 (2021)

    Google Scholar 

  24. T. Ebert, R. Heber, T. Abel, J. Bieker, G. Schaumann, M. Roth, “Targets with cone-shaped microstructures from various materials for enhanced high-intensity laser–matter interaction. High Power Laser Sci Eng. 9(2), 02000e24 (2021)

    Google Scholar 

  25. X. Xie, Y. Deng, S.L. Johnson, Compact and robust supercontinuum generation and post-compression using multiple thin plates. High Power Laser Sci. Eng. 9(4), 04000e66 (2021)

    Google Scholar 

  26. J. Zhang, H. Zhang, W. Yang, K. Chen, X. Wei, Y. Feng, R. Jin, W. Zhu, Dynamic scattering steering with graphene-based coding meta-mirror. Adv. Opt. Mater. 8, 2000683 (2020)

    Article  Google Scholar 

  27. X. Bai, F. Kong, Y. Sun, F. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, W. Zhu, High-efficiency transmissive programmable metasurface for multi-mode OAM generations. Adv. Opt. Mater. 8, 2000570 (2020)

    Article  Google Scholar 

  28. X. Jing, X. Gui, P. Zhou, Z. Hong, Physical explanation of Fabry–Pérot cavity for broadband bilayer metamaterials polarization converter. J. Lightwave Technol. 36(12), 2322–2327 (2018)

    Article  ADS  Google Scholar 

  29. R. Xia, X. Jing, X. Gui, Y. Tian, Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials. Opt. Mater. Express 7(3), 977–988 (2017)

    Article  ADS  Google Scholar 

  30. M.R. Akram, M.Q. Mehmood, X. Bai, R. Jin, M. Premaratne, W. Zhu, High efficiency ultra-thin transmissive metasurfaces. Adv. Opt. Mater. 7, 1801628 (2019)

    Article  Google Scholar 

  31. M.R. Akram, X. Bai, R. Jin, G.A.E. Vandenbosch, M. Premaratne, W. Zhu, Photon spin Hall effect based ultra-thin transmissive metasurface for efficient generation of OAM waves. IEEE Trans. Antennas Propag. 67(7), 4650–4658 (2019)

    Article  ADS  Google Scholar 

  32. J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, G. Shi, Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Opt. Laser Technol. 95, 56–62 (2017)

    Article  ADS  Google Scholar 

  33. Y. Tian, X. Jing, H. Gan, X. Li, Z. Hong, Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces. Front. Phys. 15, 62502 (2020)

    Article  ADS  Google Scholar 

  34. C. Zhou, Z. Mou, R. Bao, Z. Li, S. Teng, Compound plasmonic vortex generation based on spiral nanoslits. Front. Phys. 16, 33503 (2021)

    Article  ADS  Google Scholar 

  35. G. Dai, Designing nonlinear thermal devices and metamaterials under the Fourier law: a route to nonlinear thermotics. Front. Phys. 16, 53301 (2021)

    Article  ADS  Google Scholar 

  36. L. Lan, Y. Gao, X. Fan, M. Li, Q. Hao, T. Qiu, The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys. 16, 43300 (2021)

    Article  ADS  Google Scholar 

  37. J. Li, R. Jin, J. Geng, X. Liang, K. Wang, M. Premaratne, W. Zhu, Design of a broadband metasurface Luneburg lens for full-angle operation. IEEE Trans. Antennas Propag. 67(4), 2442–2451 (2019)

    Article  ADS  Google Scholar 

  38. X. Lu, X. Zeng, H. Lv, Y. Han, Z. Mou, C. Liu, S. Wang, S. Teng, Polarization controllable plasmonic focusing based on nanometer holes. Nanotechnology 31, 135201 (2020)

    Article  ADS  Google Scholar 

  39. H. Lv, X. Lu, Y. Han, Z. Mou, C. Zhou, S. Wang, S. Teng, Metasurface cylindrical vector light generators based on nanometer holes. New J. Phys. 21, 123047 (2019)

    Article  Google Scholar 

  40. B. Fang, D. Feng, P. Chen et al., Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region. Front. Phys. 17, 53502 (2022)

    Article  ADS  Google Scholar 

  41. S. Liu, T.J. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wang, J.Q. Gu, W.X. Tang, M.Q. Qi, J.G. Han, Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv. Sci. 3(10), 1600156 (2016)

    Article  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Zhejiang Province under Grant LY22F050001, Grant LZ21A040003, Grant LY21F050006, and Grant LY20F050007; in part by the National Natural Science Foundation of China under Grant 62175224; and Zhejiang University Students Science and Technology Innovation Program (New Talent Program) (2022R409055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxia Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, B., Zhou, P., Zhao, T. et al. Far-field scattering of electromagnetic waves based on all-dielectric geometric phase encoding metasurfaces. Appl. Phys. A 129, 66 (2023). https://doi.org/10.1007/s00339-022-06338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06338-7

Keywords

Navigation