Skip to main content
Log in

Structural and conductivity investigations of composite polymer electrolytes based on poly(oxyethylene)

  • S.i. : 50th Anniversary of Applied Physics
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The scope of this paper is to study in detail the influence of inorganic fillers on the structure of composite polymeric electrolytes based on high-molecular weight poly(oxyethylene). It was mostly driven by large discrepancies between results reported by different authors as well as lack of detailed and complete information on the properties of composite electrolytes in the numerous articles published in the last 30 years. To enhance the transport properties—annealing steps were applied. First just below the melting point of the crystalline poly(oxyethylene) phase—at 60 °C, and then at 80 °C, 100 °C and 120 °C. They led to a dramatic increase of the ionic conductivities, for both—reference, and composite electrolytes; however, the effect was most pronounced for micron-sized fillers. On the other hand, nano-powders filled samples exhibited the best mechanical stability. To study the mechanism of the conductivity enhancement, combined X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies were conducted. Appearance, disappearance, and changes in relative volume of different phases present in the electrolytes were observed. These are the first-reported results showing such changes upon annealing. Since these are multiphase systems and no obvious space groups can be applied to study the changes in the diffractograms, correlation analysis was employed to investigate this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M.B. Armand, P. Hagenmuller, W. Gool, Solid electrolytes: General Principles, Characterization, Materials, Applications (Academic Press, New York, 1978), pp.251–252

    Google Scholar 

  2. M.B. Armand, J.M. Chabagno, M. Duclot, Extended Abstracts of Second International Meeting on Solid Electrolytes (1978).

  3. M.B. Armand, J.M. Chabagno, M.J. Duclot, Fast Ion Transport in Solids, 131 (1979). https://www.sciencedirect.com/science/article/abs/pii/0167273883900838

  4. P.V. Wright, Electrochim. Acta 43, 1137 (1998)

    Article  Google Scholar 

  5. D.E. Fenton, J.M. Parker, P.V. Wright, Polymer 14, 589 (1973)

    Article  Google Scholar 

  6. R.D. Lundberg, F.E. Bailey, R.W. Callard, J. Polym. Sci. Part A-1(4), 1563 (1966)

    Article  Google Scholar 

  7. J. Tarascon, M. Armand, Nature 414, 359 (2001)

    Article  ADS  Google Scholar 

  8. P.G. Bruce, F.M. Gray, J. Shi, C.A. Vincent, Philos. Mag. A 64, 1091 (1991)

    Article  ADS  Google Scholar 

  9. P.G. Bruce, C.A. Vincent, Solid State Ion. 40–41, 607 (1990)

    Article  Google Scholar 

  10. P.V. Wright, Br. Polym. J. 7, 319 (1975)

    Article  Google Scholar 

  11. D.R. Payne, P.V. Wright, Polymer 23, 690 (1982)

    Article  Google Scholar 

  12. C.C. Lee, P.V. Wright, Polymer 23, 681 (1982)

    Article  Google Scholar 

  13. W. Wieczorek, J. Płocharski, J. Przyłuski, S. Głowinkowski, Z. Pajak, Solid State Ion. 28–30, 1014 (1988)

    Article  Google Scholar 

  14. B. Scrosati, R. Neat, Applications of Electroactive Polymers (Springer, Dordrecht, 1993), pp.182–222

    Google Scholar 

  15. C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, P. Rigaud, Solid State Ion. 11, 91 (1983)

    Article  Google Scholar 

  16. M.H. Cohen, D. Turnbull, J. Chem. Phys. 31, 1164 (1959)

    Article  ADS  Google Scholar 

  17. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)

    Article  ADS  Google Scholar 

  18. J.H. Gibbs, E.A. DiMarzio, J. Chem. Phys. 28, 373 (1958)

    Article  ADS  Google Scholar 

  19. S.D. Druger, M.A. Ratner, A. Nitzan, Solid State Ion. 9–10, 1115 (1983)

    Article  Google Scholar 

  20. S.D. Druger, A. Nitzan, M.A. Ratner, J. Chem. Phys. 79, 3133 (1983)

    Article  ADS  Google Scholar 

  21. S.D. Druger, M.A. Ratner, A. Nitzan, Phys. Rev. B 31, 3939 (1985)

    Article  ADS  Google Scholar 

  22. S.D. Druger, M.A. Ratner, A. Nitzan, Solid State Ion. 18–19, 106 (1986)

    Article  Google Scholar 

  23. M.A. Ratner, Polym. Electrolyte Rev. 1, 173 (1987)

    Google Scholar 

  24. J. Syzdek, M. Armand, M. Marcinek, A. Zalewska, G. Żukowska, W. Wieczorek, Electrochim. Acta 55, 1314 (2010)

    Article  Google Scholar 

  25. W. Wieczorek, K. Such, H. Wyciślik, J. Płocharski, Solid State Ion. 36, 255 (1989)

    Article  Google Scholar 

  26. J.E. Weston, B.C.H. Steele, Solid State Ion. 7, 75 (1982)

    Article  Google Scholar 

  27. P.G. De Gennes, J. Chem. Phys. 55, 572 (1971)

    Article  ADS  Google Scholar 

  28. Y. He, Z. Chen, C. Zhang, C. Wang, L. Chen, Chem. J. Chin. Univ. 2, 97 (1986)

    Google Scholar 

  29. J. Płocharski, W. Wieczorek, J. Przyłuski, K. Such, Appl. Phys. Solid Surf. 49, 55 (1989)

    Article  ADS  Google Scholar 

  30. W. Wieczorek, K. Such, J. Plocharski, J. Przyluski, Proceedings of the II International Symposium on Polymer Electrolytes, 339 (1990).

  31. J. Przyłuski, K. Such, H. Wyciślik, W. Wieczorek, Z. Floriańczyk, Synth. Met. 35, 241 (1990)

    Article  Google Scholar 

  32. M.A.K.L. Dissanayake, P.A.R.D. Jayathilaka, R.S.P. Bokalawala, I. Albinsson, B. Mellander, J. Power Sources 119–121, 409 (2003)

    Article  Google Scholar 

  33. W. Wieczorek, A. Zalewska, M. Siekierski, J. Przyluski, Solid State Ion. 86–88, 357 (1996)

    Article  Google Scholar 

  34. R.P. Lattimer, R.E. Harris, Mass Spectrom. Rev. 4, 369 (1985)

    Article  ADS  Google Scholar 

  35. J.T. Watson, Introduction to Mass Spectrometry, 2nd edn. (Raven Press, New York, 1985)

    Google Scholar 

  36. L.V. Azaroff, Elements of X-ray Crystallography (McGraw-Hill Book Company, New York, 1968)

    Google Scholar 

  37. C.S. Barrett, J.B. Cohen, J.J. Faber, R. Jenkins, D.E. Leyden, J.C. Russ, P.K. Predecki, Advances in X-ray Analysis, vol. 29 (Plenum Press, New York, 1986)

    Google Scholar 

  38. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974)

    Google Scholar 

  39. J.S. Syzdek, M.B. Armand, P. Falkowski, M. Gizowska, M. Karłowicz, Ł Łukaszuk, M.Ł Marcinek, A. Zalewska, M. Szafran, C. Masquelier, J.M. Tarascon, W.G. Wieczorek, Z. Żukowska, Chem. Mater. 23(7), 1785 (2011)

    Article  Google Scholar 

  40. J. Przylusky, W. Wieczorek, J. Therm. Anal. 38, 2229 (1992)

    Article  Google Scholar 

  41. C. Zhang, S. Gamble, D. Ainsworth, A.M.Z. Slawin, Y.G. Andreev, P.G. Bruce, Nat. Mater. 8, 580 (2009)

    Article  ADS  Google Scholar 

  42. C. Zhang, S.J. Lilley, D. Ainsworth, E. Staunton, Y.G. Andreev, A.M.Z. Slawin, P.G. Bruce, Chem. Mater. 20, 4039 (2008)

    Article  Google Scholar 

  43. C. Zhang, D. Ainsworth, Y.G. Andreev, P.G. Bruce, J. Am. Chem. Soc. 129, 8700 (2007)

    Article  Google Scholar 

  44. C. Zhang, Y.G. Andreev, P.G. Bruce, Angew. Chem. Int. Ed. 46, 2848 (2007)

    Article  Google Scholar 

  45. S.J. Lilley, Y.G. Andreev, P.G. Bruce, J. Am. Chem. Soc. 128, 12036 (2006)

    Article  Google Scholar 

  46. Y.G. Andreev, V. Seneviratne, M. Khan, W.A. Henderson, R.E. Frech, P.G. Bruce, Chem. Mater. 17, 767 (2005)

    Article  Google Scholar 

  47. I. Noda, G.M. Story, C. Marcott, Vib. Spectrosc. 19, 461 (1999)

    Article  Google Scholar 

  48. I. Noda, A.E. Dowrey, C. Marcott, G.M. Story, Y. Ozaki, Appl. Spectrosc. 54, 236A (2000)

    Article  ADS  Google Scholar 

  49. I. Noda, Appl. Spectrosc. 47, 1329 (1993)

    Article  ADS  Google Scholar 

  50. I. Noda, Appl. Spectrosc. 44, 550 (1990)

    Article  ADS  Google Scholar 

  51. B. Bogdanov, M. Michailov, J. Therm. Anal. Calorim. 30, 551 (1985)

    Article  Google Scholar 

  52. R. Neat, M. Glasse, R. Linford, A. Hooper, Solid State Ion. 18–19, 1088 (1986)

    Article  Google Scholar 

  53. C. Zhang, E. Staunton, Y.G. Andreev, P.G. Bruce, J. Am. Chem. Soc. 127, 18305 (2005)

    Article  Google Scholar 

  54. Z. Stoeva, I. Martin-Litas, E. Staunton, Y.G. Andreev, P.G. Bruce, J. Am. Chem. Soc. 125, 4619 (2003)

    Article  Google Scholar 

  55. Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, P.G. Bruce, Nature 412, 520 (2001)

    Article  ADS  Google Scholar 

  56. Z. Gadjourova, M. Martin, K.H. Andersen, Y.G. Andreev, P.G. Bruce, Chem. Mater. 13, 1282 (2001)

    Article  Google Scholar 

  57. M. Siekierski, K. Nadara, Electrochim. Acta 50, 3796 (2005)

    Article  Google Scholar 

  58. M. Siekierski, W. Wieczorek, K. Nadara, Electrochim. Acta 53, 1556 (2007)

    Article  Google Scholar 

  59. M. Siekierski, K. Nadara, J. Power Sources 173, 748 (2007)

    Article  ADS  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Sylwester Syzdek.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syzdek, J.S., Marcinek, M., Marczewski, M. et al. Structural and conductivity investigations of composite polymer electrolytes based on poly(oxyethylene). Appl. Phys. A 129, 74 (2023). https://doi.org/10.1007/s00339-022-06335-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06335-w

Keywords

Navigation