Skip to main content
Log in

Advances in the one-step synthesis of 2D and 3D sulfide materials grown by pulsed laser deposition assisted by a sulfur thermal cracker

  • S.i. : 50th Anniversary of Applied Physics
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents advances in synthesizing sulfide thin films by a hybrid approach based on pulsed laser deposition (PLD) combined with a sulfur cracker beam. In one step, we demonstrate a facile and non-toxic method to fabricate two-dimensional (2D) materials of MoS2 and sulfide kesterites of Cu2ZnSnS4 (CZTS), excluding some drawbacks such as toxic and expensive reactants or non-vacuum conditions susceptible to contamination. PLD has emerged as a catalyst-free method for the bottom-up synthesis of 2D materials, such as MoS2. However, the main figure of merit, i.e., photoluminescence (PL) yield, is relatively low. Here, we demonstrate the high-temperature synthesis of mono- and multilayers of MoS2 by enhanced sulfurization reaction via the supply of S2 and larger clusters in a PLD process. We observed that the improved sulfurization increases the sulfur content in the films, as indicated by X-ray photoelectron spectroscopy (XPS). Moreover, the mono–bilayers MoS2 produced by PLD assisted by a reactive sulfur beam exhibit a significantly enhanced PL emission. Secondly, we demonstrate the one-step synthesis of CZTS by PLD with the deposition of reactive sulfur molecules. The CZTS films were produced in a temperature range from room temperature up to 500 ℃. The composition of the films shows some variations with temperature, and the sulfur content is steadily between 47 and 52%. The growth temperature of 450 ℃ was identified as optimum for directly synthesizing high-quality CZTS films with a characteristic columnar structure. At 500 ℃, a substantial decomposition of CZTS and a complete Sn loss occurs. Our findings demonstrate that crystalline sulfide films can be grown successfully by combining PLD and deposition of reactive sulfur molecules in a non-toxic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Canulescu, T. Lippert, A. Wokaun, Appl. Phys. A 93, 771 (2008)

    Article  ADS  Google Scholar 

  2. J. Schou, M. Gansukh, R.B. Ettlinger, A. Cazzaniga, M. Grossberg, M. Kauk-Kuusik, S. Canulescu, M. Kauk-Kuusik, S. Canulescu, Appl. Phys. A. Mater. Sci. Process 124, 1–7 (2018)

    Article  Google Scholar 

  3. S. Canulescu, E.L. Papadopoulou, D. Anglos, Th. Lippert, C.W. Schneider, A. Wokaun, J. Appl. Phys. 105, 0631 (2009)

    Article  Google Scholar 

  4. A. Cazzaniga, A. Crovetto, C. Yan, K. Sun, X. Hao, J. Ramis Estelrich, S. Canulescu, E. Stamate, N. Pryds, O. Hansen, J. Schou, Sol. Energy. Matter. Sol. Cells. 166, 91 (2017)

    Article  Google Scholar 

  5. A. Ojeda-G-P, C.W. Schneider, M. Doebeli, T. Lippert, A. Wokaun, Appl. Surf. Sci. 336, 150 (2015)

    Article  ADS  Google Scholar 

  6. W. Svendsen, J. Schou, T.N. Hansen, O. Ellegaard, Appl. Phys. A 66, 493 (1998)

    Article  ADS  Google Scholar 

  7. J.D. Yao, Z.Q. Zheng, J.M. Shao, G.W. Yang, Nanoscale 7, 14974 (2015)

    Article  ADS  Google Scholar 

  8. T.A.J. Loh, D.H.C. Chua, A.T.S. Wee, Sci. Rep. 5, 1 (2015)

    Article  Google Scholar 

  9. D.I. Miakota, R.R. Unocic, F. Bertoldo, G. Ghimire, S. Engberg, D. Geohegan, K.S. Thygesen, S. Canulescu, Nanoscale 14, 9485 (2022)

    Article  Google Scholar 

  10. T.A.J. Loh, D.H.C. Chua, ACS. Appl. Mat. Inter. 6, 15966 (2014)

    Article  Google Scholar 

  11. G. Siegel, Y.P. Venkata Subbaiah, M.C. Prestgard, A. Tiwari, APL. Mater. 3, 56103 (2015)

    Article  ADS  Google Scholar 

  12. M. I. Serna, S. H. Yoo, S. Moreno, Y. Xi, J. P. Oviedo, H. Choi, H. N. Alshareef, M. J. Kim, M. and Q. L. Minary-Jolandan M. A., S. M. I., Y. S. H., S. Moreno, and J. P. O. Yang Xi, Hyunjoo Choi, Husam N. Alshareef, Moon J. Kim, Majid Minary-Jolandan, and Manuel A. Quevedo-Lopez, ACS Nano 10, 6054 (2016).

  13. F. Bertoldo, R.R. Unocic, Y.-C. Lin, X. Sang, A.A. Puretzky, Y. Yu, D. Miakota, C.M. Rouleau, J. Schou, K.S. Thygesen, D.B. Geohegan, S. Canulescu, ACS Nano 15, 2858 (2021)

    Article  Google Scholar 

  14. L. Tao, K. Chen, Z. Chen, W. Chen, X. Gui, H. Chen, X. Li, J.-B. Xu, ACS. Appl. Mater. Interfaces. 9, 12073 (2017)

    Article  Google Scholar 

  15. A.A. Puretzky, Y.C. Lin, C. Liu, A.M. Strasser, Y. Yu, S. Canulescu, C.M. Rouleau, K. Xiao, G. Duscher, D.B. Geohegan, 2D. Mater. 7, 025048 (2020)

    Article  Google Scholar 

  16. C.R. Serrao, A.M. Diamond, S.-L. Hsu, L. You, S. Gadgil, J. Clarkson, C. Carraro, R. Maboudian, C. Hu, S. Salahuddin, Appl. Phys. Lett. 106, 052101 (2015)

    Article  ADS  Google Scholar 

  17. Y.-T. Ho, C.-H. Ma, T.-T. Luong, L.-L. Wei, T.-C. Yen, W.-T. Hsu, W.-H. Chang, Y.-C. Chu, Y.-Y. Tu, K.P. Pande, E.Y. Chang, Phys. Status. Solidi. Rapid. Res. Lett. 9, 187 (2015)

    Article  ADS  Google Scholar 

  18. A. Tsekou, F. Martinho, D. Miakota, S. Canulescu, S. Engberg, Appl. Phys. A 128, 970 (2022)

    Article  ADS  Google Scholar 

  19. B.-A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H.-W. Schock, Prog. Photovolt. Res. Appl. 19, 93 (2011)

    Article  Google Scholar 

  20. A. Redinger, S. Siebentritt, Appl. Phys. Lett 97, 92111 (2010)

    Article  Google Scholar 

  21. R.B. Ettlinger, A. Cazzaniga, S. Canulescu, N. Pryds, J. Schou, Appl. Surf. Sci. 336, 385 (2015)

    Article  ADS  Google Scholar 

  22. M. Gansukh, S. López Mariño, M. Espindola Rodriguez, S. Engberg, F. Martinho, A. Hajijafarassar, N. Schjødt, E. Stamate, O. Hansen, J. Schou, S. Canulescu, Sol. Energy Mat. Sol. Cells. 215, 110605 (2020)

    Article  Google Scholar 

  23. I. Kentaro, Copper zinc tin sulfide-based thin film solar cells (Wiley Online Library, Hoboken, 2015)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Independent Research Fund Denmark, Sapere Aude Grant (Grant No. 8049-00095B), and Innovation Fund Denmark (Grant No. 6154-00008A).

Funding

Funding was provided by Innovationsfonden, 6154-00008B ALTCELL, Jørgen Schou, Danmarks Frie Forskningsfond, 8049-00095B, Stela Canulescu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stela Canulescu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 170 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramish Esterlich, J., Affannoukoue, K., Kaupmees, R. et al. Advances in the one-step synthesis of 2D and 3D sulfide materials grown by pulsed laser deposition assisted by a sulfur thermal cracker. Appl. Phys. A 129, 59 (2023). https://doi.org/10.1007/s00339-022-06319-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06319-w

Navigation