Skip to main content
Log in

Microstructure and tribological performance of laser cladded Ti–NiCrAl coating by Ti-dilution effect

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ti–NiCrAl coating was fabricated on the substrate of Ti6Al4V alloy by laser cladding (LC), in which the Ti originated from the diluted element of substrate. The results show the Ti–NiCrAl coating is composed of NiTi and NiTi2 phases with the trace CrO and Al2O3 phases, in which the oxide phases are acted as an effective barrier to provide high-temperature protection for the substrate. The coefficient of friction (COF) and wear rate of Ti–NiCrAl coating are decreased with the elevated temperatures, which is attributed to the phase transformation of NiTi and NiTi2. The wear mechanism is the combination of abrasive wear and adhesive wear, in which the phase transformation of NiTi and NiTi2 phases play the roles of friction reduction and wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.J. Zhen, X. Peng, A new approach to manufacture oxidation-resistant NiCrAl overlay coatings by electrodeposition. Corros. Sci. 150, 121–126 (2019)

    Article  Google Scholar 

  2. X. Peng, H.J. Zhen, L.X. Tian, X.L. Wang, K. Wang, Y. Xie, A novel strategy to apply metallic nanoparticles to manufacture NiCrAl composite coatings smartly growing chromia and alumina. Compos. Part B Eng. 234, 109721 (2022)

    Article  Google Scholar 

  3. U. Schulz, A. Leyens, K. Fritscher, Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp. Sci. Technol. 7, 73–80 (2003)

    Article  Google Scholar 

  4. M. Pomeroy, Coatings for gas turbine materials and long term stability issues. Mater. Design 26, 223–231 (2005)

    Article  Google Scholar 

  5. B.B. Xin, Y.J. Yu, J.S. Zhou, L.Q. Wang, S.F. Ren, Effect of copper molybdate on the lubricating properties of NiCrAlY laser clad coating at elevated temperatures. Surf. Coat. Technol. 313, 328–336 (2017)

    Article  Google Scholar 

  6. G. Moskal, D. Niemiec, B. Chmiela, P. Kałamarz, T. Durejko, M. Ziętala, T. Czujko, Microstructural characterization of laser-cladded NiCrAlY coatings on Inconel 625 Ni-based superalloy and 316L stainless steel. Surf. Coat. Technol. 387, 125317 (2020)

    Article  Google Scholar 

  7. J.R. Nicholls, Advances in coating design for high performance gas turbines. MRS Bull. 28, 659–663 (2003)

    Article  Google Scholar 

  8. T.J. Nijdam, L.P.H. Jeurgens, W.G. Sloof, Promoting exclusive α-Al2O3 growth upon high-temperature oxidation of NiCrAl alloys: experiment versus model predictions. Acta Mater. 53, 1643–1653 (2005)

    Article  ADS  Google Scholar 

  9. H.B. Guo, X.Y. Wang, J. Li, S.X. Wang, S.K. Gong, Effects of Dy on cyclic oxidation resistance of NiAl alloy. Trans. Nonferrous Met. Soc. China 19, 1185–1189 (2009)

    Article  Google Scholar 

  10. V.P. Deodeshmukh, S.J. Matthews, D.L. Klarstrom, High-temperature oxidation performance of a new alumina-forming Ni–Fe–Cr–Al alloy in flowing air. Int. J. Hydrog. Energy 36, 4580–4587 (2011)

    Article  Google Scholar 

  11. N.S. Bornstein, Oxidation of advanced intermetallic compounds. J. Phys. IV France 3, 367–373 (1993)

    Article  Google Scholar 

  12. T. Yu, H.Y. Tang, Microstructure and high-temperature wear behavior of laser clad TaC-reinforced Ni–Al–Cr coating. Appl. Surf. Sci. 592, 153263 (2022)

    Article  Google Scholar 

  13. J. Liu, L.M. Wang, F.Y. Li, X.J. Ran, X. Peng, Life cycle Inventory of NiCrAl/NiCr-Cr3C2 composite coatings for plasma spraying process. Procedia Manuf. 43, 559–566 (2020)

    Article  Google Scholar 

  14. I. Alfred, M. Nicolaus, J. Hermsdorf, S. Kaierle, K. Mohwald, H.J. Maier, V. Wesling, Advanced high pressure turbine blade repair technologiesm. Procedia CRIP 74, 214–217 (2018)

    Article  Google Scholar 

  15. R.A. Mahesh, R. Jayaganthan, S. Prakash, Microstructural characteristics and mechanical properties of HVOF sprayed NiCrAl coating on superalloys. J. Alloy. Compd. 468, 392–405 (2009)

    Article  Google Scholar 

  16. R.A. Mahesh, R. Jayaganthan, S. Prakash, Evaluation of hot corrosion behaviour of HVOF sprayed NiCrAl coating on superalloys at 900 °C. Mater. Chem. Phys. 111, 524–533 (2008)

    Article  Google Scholar 

  17. X.M. Peng, C.Q. Xia, X.Y. Dai, A.R. Wu, L.J. Dong, D.F. Li, Y.R. Tao, Study on the interface reaction behavior of NiCrAlY coating on titanium alloy. Surf. Coat. Technol. 232, 254–263 (2013)

    Article  Google Scholar 

  18. G. Bolelli, A. Candeli, L. Lusvarghi, A. Ravaux, K. Cazes, A. Denoirjean, S. Valette, C. Chazelas, E. Meillot, L. Bianchi, Tribology of NiCrAlY+Al2O3 composite coatings by plasma spraying with hybrid feeding of dry powder + suspension. Wear 344–345, 69–85 (2015)

    Article  Google Scholar 

  19. L. Avril, B. Courant, J.J. Hantzpergue, Tribological performance of α-Fe(Cr)-Fe2B-FeB and α-Fe(Cr)-h-BN coatings obtained by laser melting. Wear 260(4–5), 351–360 (2006)

    Article  Google Scholar 

  20. M.S. Reddy, C.D. Prasad, P. Patil, M.R. Ramesh, N. Rao, Hot corrosion behavior of plasma-sprayed NiCrAlY/TiO2 and NiCrAlY/Cr2O3/YSZ cermets coatings on alloy steel. Surf. Interfaces 22, 100810 (2021)

    Article  Google Scholar 

  21. A. Ul-Hamid, A TEM, study of the oxide scale development in Ni-Cr-Al alloys. Corros. Sci. 46, 27–36 (2004)

    Article  Google Scholar 

  22. Y. Li, B. Ma, J.P. Zhao, Q.Y. Wei, K. Su, Corrosion resistance of NiCrAl coatings in the salt spray tests. Rare Metal Mater. Eng. 39, 2181–2184 (2010)

    Google Scholar 

  23. D.A. Yancheshmeh, M. Esmailian, K. Shirvani, Microstructural and oxidation behavior of Ni-Cr-Al super alloy containing hafnium at high temperature. Int. J. Hydrog. Energy 43, 5365–5373 (2018)

    Article  Google Scholar 

  24. A. Mussa, P. Krakhmalev, J. Bergström, Sliding wear and fatigue cracking damage mechanisms in reciprocal and unidirectional sliding of high-strength steels in dry contact. Wear 444–445, 203119 (2020)

    Article  Google Scholar 

  25. R.D. Noebe, R.R. Bowman, M.V. Nathal, Physical and mechanical-properties of the B2 ompound NiAl. Int. Mater. Rev. 38, 193–232 (1993)

    Article  Google Scholar 

  26. W. Li, C. Huang, M. Yu, D. Liu, Y. Feng, H. Liao, Investigation of high temperature oxidation behavior and tribological performance on cold sprayed nickel-alumina composite coating. Surf. Coat. Technol. 239, 95–101 (2014)

    Article  Google Scholar 

  27. P.Y. Shi, W.Z. Wang, S.H. Wan, Q. Gao, H.W. Sun, X.C. Feng, G.W. Yi, E.Q. Xie, Q.H. Wang, Tribological performance and high temperature oxidation behaviour of thermal sprayed Ni- and NiCrAlY-based composite coatings. Surf. Coat. Technol. 405, 126615 (2021)

    Article  Google Scholar 

  28. W.N. Su, X.F. Cui, G. Jin, Y.J. Guan, Y. Zhao, S.M. Wan, C.H. Liu, Y.Y. Yang, H.L. Tian, Effect of Si element and YF3 addition on microstructure and phase transformation of NiTi alloy coatings. Mater. Charact. 184, 111677 (2022)

    Article  Google Scholar 

  29. M. Thomasová, P. Sedlák, H. Seiner, M. Janovská, M. Kabla, D. Shilo, M. Landa, Young’s moduli of sputter-deposited NiTi films determined by resonant ultrasound spectroscopy: austenite, R-phase, and martensite. Scripta Mater. 101, 24–27 (2015)

    Article  Google Scholar 

  30. E. Nigito, F. Diemer, S. Husson, S.F. Ou, M.H. Tsai, F. Rézaï-Aria, Microstructure of NiTi superelastic alloy manufactured by selective laser melting. Mater. Lett. 324, 132665 (2022)

    Article  Google Scholar 

  31. C. Raabe, D.G. Welsch, Dispersion forces within the framework of macroscopic QED. Acta Phys. Hung. B 26, 3–10 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Jufang or Kong Dejun.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furong, C., Jufang, C. & Dejun, K. Microstructure and tribological performance of laser cladded Ti–NiCrAl coating by Ti-dilution effect. Appl. Phys. A 129, 79 (2023). https://doi.org/10.1007/s00339-022-06314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06314-1

Keywords

Navigation