Skip to main content
Log in

Sr(Sn,Se)O3 modified Bi0.5K0.5TiO3 ferroelectric ceramics: structural, electrical and leakage current characteristics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This research article deliberates the structural, electrical and leakage current characteristics of strontium stannate- selenites, (Sr(Sn,Se)O3) modified bismuth potassium titanate (Bi0.5K0.5TiO3) compound of chemical compositions (1-2x) (Bi0.5K0.5)TiO3-x (SrSnO3)-x (SrSeO3) (x = 0, 0.05, 0.10, 0.15). The compounds have been synthesized through a solid-state reaction process with calcination temperature = 1000 °C and sintering temperature = 1050 °C for 5 h each. The room temperature XRD spectrum indicates the development of single-phase ceramics with tetragonal symmetry. Detailed investigations of the electrical characteristics as a function of frequency (1 kHz to 1 MHz) and temperature (25–500 °C) are obtained using the programmable phase-sensitive meter. The leakage current (J–E) properties of the materials have shown a very small amount of leakage current density with the existence of an Ohmic conduction mechanism. The room temperature polarization study through the hysteresis loops confirms the ferroelectric properties of the studied materials. The remarkable experimental results obtained here suggest the usefulness of the prepared materials in various electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

The authors confirm that the data supporting the findings of this work are available within the article. Raw data that support the findings of the study are available from the corresponding author, upon reasonable request.

References

  1. A. Banerjee, S. Bose, Chem. Mater. 16, 5610–5615 (2004)

    Article  Google Scholar 

  2. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971)

    Google Scholar 

  3. G. Shirane, K. Suzuki, J. Phys. Soc. Jpn. 7, 333–333 (1952)

    Article  ADS  Google Scholar 

  4. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nat. Lond. 432, 84–87 (2004)

    Article  ADS  Google Scholar 

  5. M. Zhu, L. Hou, Y. Hou, J. Liu, H. Wang, H. Yan, Mater. Chem. Phys. 99, 329–332 (2006)

    Article  Google Scholar 

  6. P. Phetnoi, S. Niemcharoen, R. Muanghlua, M. Sutapun and N. Vittayakorn, ECTI-CON, (2010) 962–965.

  7. Y. Hiruma, R. Aoyagi, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 44, 5040–5044 (2005)

    Article  ADS  Google Scholar 

  8. Y. Pu, P. Gao, T. Wu, X. Liu, Z. Dong, J. Electron. Mater. 44, 332–340 (2015)

    Article  ADS  Google Scholar 

  9. E. Baba, D. Kan, Y. Yamada, M. Haruta, H. Kurata, Y. Kanemitsu, Y. Shimakawa, J. Phys. D. 48, 455106 (2015)

    Article  ADS  Google Scholar 

  10. M. Glerup, K.S. Knight, F.W. Poulsen, Mater. Res. Bull. 40, 507–520 (2005)

    Article  Google Scholar 

  11. M.A. Green, K. Prassides, P. Day, D.A. Neumann, Int. j. inorg. mater. 2, 35–41 (2000)

    Article  Google Scholar 

  12. L.T. Vlaev, M.M. Nikolova, G.G. Gospodinov, Monatshefte Chem. 136, 1553–1566 (2005)

    Article  Google Scholar 

  13. M.-L. Liang, Y.-X. Ma, C.-L. Hu, F. Kong, J.-G. Mao, Dalton Trans. 47, 1513–1519 (2018)

    Article  Google Scholar 

  14. M. Wildner, G. Giester, N. Jb, Miner. Abh 184, 29–37 (2007)

    Article  Google Scholar 

  15. Q. Chen, K. Su, Z. Zhao, Q. Ma, J. Non-Cryst, Solids 498, 448–454 (2018)

    Google Scholar 

  16. A. Bachvarova-Nedelcheva, R. Iordanova, St. Yordanov, Y. Dimitriev, J. Non-Cryst. Solids 355 (2009) 2027–2030.

  17. B.B. Arya, R.N.P. Choudhary, Solid State Sci. 109, 106381 (2020)

    Article  Google Scholar 

  18. Sk. Anirban, A. Dutta, Solid State Ion. 309 (2017) 137–145.

  19. http://abulafia.mt.ic.ac.uk/shannon/

  20. K.A. Aly, N.M. Khalil, Y. Algamal, Q.M. Saleem, J. Alloys Compd 676, 606–612 (2016)

    Article  Google Scholar 

  21. M.M. Hassan, A.S. Ahmed, M. Chaman, W. Khan, A.H. Naqvi, A. Azam, Mater Res. Bull. 47, 3952–3958 (2012)

    Article  Google Scholar 

  22. J.C. Anderson, Dielectrics (Chapman & Hall, London, 1964)

    Google Scholar 

  23. Y. Zhi, A. Chen, J. Appl. Phys. 91, 5325–5333 (2002)

    Article  ADS  Google Scholar 

  24. M Barsoum Fund. Ceram. Mc Graw Hill, New York (1977) p 543.

  25. N. Shukla, V. Kumar, D.K. Dwivedi, J. Non Oxide Glasses 8, 47–57 (2016)

    Google Scholar 

  26. E. Barsoukov, J.R. Macdonald, 2nd ed., Impedance Spectroscopy Theory, Experiment and Applications, vol. 14, Wiley-Interscience, New York, 2005

  27. C.G. Koops, Phys. Rev. 83, 121–124 (1951)

    Article  ADS  Google Scholar 

  28. S. Shojaei, S.A. Hassanzadeh-Tabrizi, M. Ghashang, Ceram. Int. 40, 9609–9613 (2014)

    Article  Google Scholar 

  29. B.B. Arya, M. Mohanty, R.N.P. Choudhary, Mater. Chem. Phys. 279, 12571 (2022)

    Article  Google Scholar 

  30. J.F. Yang, Y.D. Hou, C. Wang, M.K. Zhu, H. Yan, Appl. Phys. Lett. 91, 023118 (2007)

    Article  ADS  Google Scholar 

  31. N.A. Hegab, A.E. Bekheet, M.A. Afifi, L.A. Wahaba, H.A. Shehata, J. Ovonic Res. 3, 71 (2007)

    Google Scholar 

  32. S. Nath, S.K. Barik, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 8717–8724 (2016)

    Article  Google Scholar 

  33. P. Jarupoom, P. Jaita, R. Yimnirun, G. Rujijanagul, D.P. Cann, Curr. Appl. Phys. 15, 1521–1528 (2015)

    Article  ADS  Google Scholar 

  34. P. Jaita, P. Jarupoom, D.R. Sweatman, G. Rujijanagul, J. Asian Ceram. Soc. 9, 947–963 (2021)

    Article  Google Scholar 

  35. C.Y. Ng, K.A. Razak, J. Alloys Compd 509, 942–947 (2011)

    Article  Google Scholar 

  36. Z. Yang, B. Liu, L. Wei, Y. Hou, Mater. Res. Bull. 43, 81–89 (2008)

    Article  Google Scholar 

  37. Z. Yang, Y. Hou, B. Liu, L. Wei, Ceram. Int. 35, 1423–1427 (2009)

    Article  Google Scholar 

  38. M. Hagiwara, & S. Fujihara, Jpn J Appl Phys, 54 (1015) 10ND10

  39. W.Z. Zhu, A. Kholkin, P.Q. Mantas, J.L. Baptista, Mater. Chem. Phys. 73, 62–69 (2002)

    Article  Google Scholar 

  40. A.H. Scott, Rubber Chem. Technol. 9, 449–467 (1936)

    Article  Google Scholar 

  41. R. Ramani, R. Ramachandran, G. Amarendra, S. Alam, J. Phys. Conf. Ser. 618, 012025 (2015)

    Article  Google Scholar 

  42. S. Brahma, R.N.P. Choudhary, S.A. Shivashankar, J. Phys. Chem. Solids 73, 357–362 (2012)

    Article  ADS  Google Scholar 

  43. S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Mater Sci Eng B 177, 428–435 (2012)

    Article  Google Scholar 

  44. H. Jain, C.H. Hsieh, J. Non-Cryst, Solids 172, 1408–1412 (1994)

    Google Scholar 

  45. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387 (2013)

    Article  ADS  Google Scholar 

  46. K. Lily, K. Kumari, R.N.P. Choudhary, K. Prasad, J. Alloys Compd. 453, 325–331 (2008)

    Article  Google Scholar 

  47. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Stat. Sol. 201, 588–595 (2004)

    Article  ADS  Google Scholar 

  48. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  49. J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems, John Wiley & Sons, 1987 Chapter 4.

  50. Z. Raddaoui, R. Brahem, A. Bajahzar, H.M. Albetran, J. Dhahri, H. Belmabrouk, J Mater Sci 32, 23333–23348 (2021)

    Google Scholar 

  51. I.D. Raistrick, Application of impedance spectroscopy to problems in solid state ionics Solid State Ion. 18, 40-49 (1986)

  52. J.R. Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ion. 13, 147–149 (1984)

    Article  ADS  Google Scholar 

  53. W. Scheider, B.R. Eisenberg, B.A. Mobley, Impedance spectroscopy (Wiley-Inter Science, London, 1975)

    Google Scholar 

  54. B.B. Arya, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 32, 11547–11567 (2021)

    Article  Google Scholar 

  55. L. Agrawal, B.P. Singh, T.P. Sinha, Mat. Res. Bull. 44, 1858–1862 (2009)

    Article  Google Scholar 

  56. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850–3856 (1989)

    Article  ADS  Google Scholar 

  57. K.S. Rao, K.C.V. Rajulu, B. Tilak, A. Swathi, Nat. Sci. 2, 357–367 (2010)

    Google Scholar 

  58. J.K. Lee, H.W. Park, H.W. Choi, J.E. Kim, S.J. Kim, Y.S. Yang, J. Korean Phys. Soc. 47, 267–270 (2005)

    Article  Google Scholar 

  59. A. H. Scott, A. T. McPherson, and Harvey L. Curtis, Rubber Chem. Technol. 7 (1934) 342–370.

  60. K. Jonscher, Dielectric relaxation in solids, 1st edn. (Chelesa Dielectric Press), London, 1983)

    Google Scholar 

  61. H. Hassib, A. Abdel Razik, Solid State Commun. 147 (2008) 345–349.

  62. A. Belboukhari, E. Choukri, Y. Gagou, R. Elmoznine, N. Abdelmoula, A. Neqali, M. El Marssi, H. Khemakhem, D. Mezzane, Superlattices Microstruct. 71, 7–22 (2014)

    Article  ADS  Google Scholar 

  63. K. Sambasiva Rao, P. Murali Krishna, D. Madhava Prasad, Phys. Status Solidi (b) 244 (2007) 2267

  64. F.-C. Chiu, Adv. Mater. Sci. Eng. 647, 1–18 (2014)

    Google Scholar 

  65. X.G. Tang, J. Wang, Y.W. Zhang, H.L.W. Chan, J. Appl. Phys 94, 5163–5166 (2003)

    Article  ADS  Google Scholar 

  66. A.K. Jena, S. Satapathy, J. Mohanty, Phys. Chem. Chem. Phys. 21, 15854–15860 (2019)

    Article  Google Scholar 

  67. F.C. Chiu, C.M. Lai, J. Phys. D: Appl. Phys. 43, 075104 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Arya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, B.B., Samantray, N.P. & Choudhary, R.N.P. Sr(Sn,Se)O3 modified Bi0.5K0.5TiO3 ferroelectric ceramics: structural, electrical and leakage current characteristics. Appl. Phys. A 129, 55 (2023). https://doi.org/10.1007/s00339-022-06313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06313-2

Keywords

Navigation